FIRST PROGRESS REPORT ON SURVEY OF CONTAMINANTS IN VACTOR TRUCK WASTES: RESULTS OF JULY 1991 SAMPLING

Prepared for

Helen Pressley Water Quality Program Department of Ecology

by

Dave Serdar

Washington State Department of Ecology Environmental Investigations and Laboratory Services Program Toxics, Compliance, and Ground Water Investigations Section Olympia, Washington 98504-7710

February 1992

INTRODUCTION

Vactor trucks are widely used in the Puget Sound area to remove sediments and standing water from storm drain facilities such as catch basins (Herrera Environmental Consultants, Inc. 1991). Disposal of vactor wastes is an important issue because of their potential to contaminate surface waters or ground waters. There are presently few data on the chemical, physical, and bacteriological nature of vactor wastes, although contaminated catch basin sediments and water, which may constitute the bulk of these wastes, have been well documented in the Puget Sound region (Tetra Tech, Inc. 1988; Resource Planning Associates 1990). Lead, polychlorinated biphenyls (PCBs), polynuclear aromatic hydrocarbons (PAHs), and septage are examples of contaminants that have been found during catch basin surveys.

The Department of Ecology (Ecology) does not have any formal guidelines regarding the disposal of vactor wastes. As a result, some existing disposal practices may violate or dangerous waste regulations, or otherwise be harmful to the environment. In order for Ecology to develop guidelines that address appropriate disposal practices, more information is needed on the nature of vactor wastes.

In response to this data gap, the Toxics Section of Ecology's Environmental Investigations Program, in conjunction with PTI Environmental Services of Bellevue, Washington, is conducting a survey of contaminants in vactor truck wastes. This survey was conceived of by the Stormwater Unit (Water Quality Program) and will be used by them to develop guidelines for disposal of vactor wastes. The status of the survey, a description of the sampling effort, and results of sample analysis to date are reported here.

Status of the Present Survey

PTI Environmental Services of Bellevue, Washington was hired to conduct a portion of the survey under funding from a Puget Sound Estuary Program (PSEP) grant. They have fulfilled their commitment by completing the following tasks:

<u>Task</u>	Completion Dates
Prepare a project work plan	draft-May 1991
 Prepare a sampling and analysis plan (SAP) 	draft-July 1991
Collect vactor decant water and sediment samples ¹	July 1991
Analyze decant water samples	July-August 1991
 Prepare technical memorandum with results of decant water analyses 	draft-September 1991

¹Sediment samples were collected by Ecology.

Ecology will complete the remainder of the project with funds from a 205(j) grant. Tasks to be completed include:

Task	Target Completion Dates

• Analyze sediments collected July 1991 December 1991

• Conduct follow-up sampling March 1992

• Prepare final report September 1992

Analysis of sediment samples is complete and results are presented in this report. Analytical costs for the sediment samples collected in July 1991 was \$18,395, leaving \$16,105 available for analysis of follow-up samples (total funds allocated for sample analysis = \$34,500).

The final report will include an interpretation of all data with respect to relevant water quality, dangerous waste disposal, and toxics clean-up criteria. It is slated for completion in September 1992.

METHODS

Sampling was conducted July 22-31 as a cooperative effort between PTI and Ecology. Unless otherwise noted, sampling methods were consistent with those described in PTI's document: Characterization of Catch Basin Wastes: Sampling and Analysis Plan (PTI Environmental Services 1991a).

Sampling Locations

Sites were selected to characterize contaminants from three broad land use areas: high-density residential, commercial/light industrial, and heavy industrial. Table 1 lists sites where samples were collected from vactor trucks. Appendix A shows map locations of each station. Vactor trucks operated exclusively in one of the three land use categories for each day of sampling.

All vactoring in Snohomish County was originally scheduled to be done in the Paine Field area. However, based on advice from the Snohomish County vactor crew, other areas were utilized because they better represented the targeted land use types.

Sampling Procedures

Figure 1 schematically diagrams the sampling routine in Snohomish County. All of the Snohomish County samples were collected from vactor trucks after they arrived at the

Table 1. Description of Vactor Water and Sediment Sampling Sites

Station #	Station # City or County	Land Use	Maintenance Jurisdiction	Sampling Date	Sample Type
-	Snohomish Co.	Residential	Snohomish Co. Public Works Dept.	22 July 1991	Water, Sediment
8	Snohomish Co.	Residential	Snohomish Co. Public Works Dept.	23 July 1991	Water, Sediment
ო	Snohomish Co.	Residential	Snohomish Co. Public Works Dept.	23 July 1991	Water, Sediment
4	Snohomish Co.	Commercial/Light Industrial	Snohomish Co. Public Works Dept.	24 July 1991	Water, Sediment
5	Snohomish Co.	Commercial/Light Industrial	Snohomish Co. Public Works Dept.	24 July 1991	Water, Sediment
9	Snohomish Co.	Commercial/Light Industrial	Snohomish Co. Public Works Dept.	25 July 1991	Water, Sediment
7	Snohomish Co.	Commercial/Light Industrial	Snohomish Co. Public Works Dept.	25 July 1991	Water, Sediment
∞	Seattle	Heavy Industrial	Seattle Engineering Dept.	29 July 1991	Water, Sediment
6	Seattle	Heavy Industrial	Seattle Engineering Dept.	29 July 1991	Water
10	Seattle	Heavy Industrial	Seattle Engineering Dept.	29 July 1991	Water
=	Seattle	Heavy Industrial	Seattle Engineering Dept.	29 July 1991	Water, Sediment
12	Seattle	Heavy Industrial	Seattle Engineering Dept.	30 July 1991	Water, Sediment
13	Seattle	Heavy Industrial	Seattle Engineering Dept.	30 July 1991	Water
4	Seattle	Heavy Industrial	Seattle Engineering Dept.	30 July 1991	Water
5	Seattle	Heavy Industrial	Seattle Engineering Dept.	30 July 1991	Water, Sediment
16	Snohomish Co.	Residential	Snohomish Co. Public Works Dept.	31 July 1991	Water, Sediment

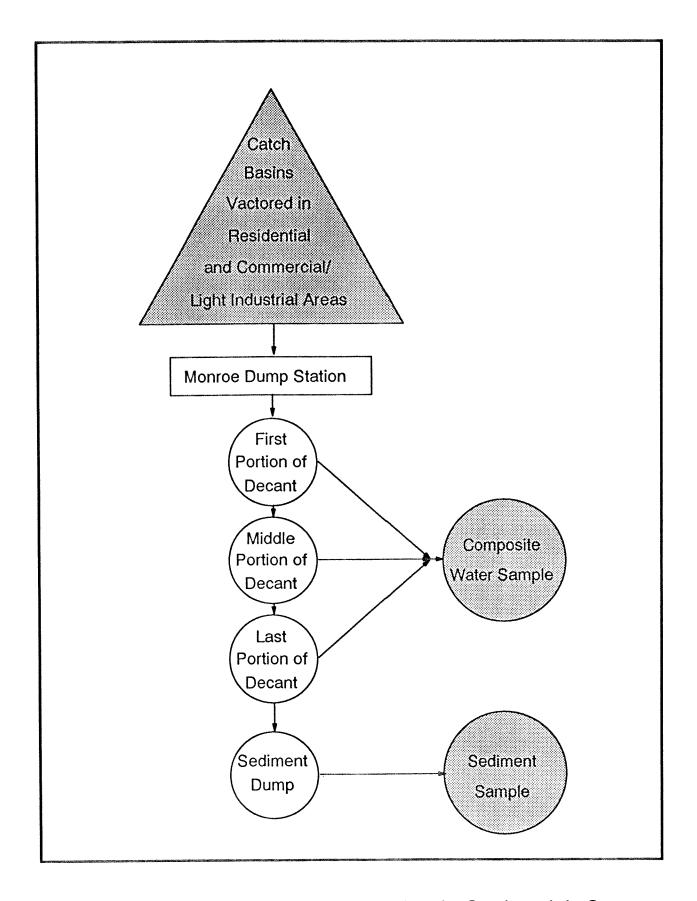


Figure 1. Schematic of Sample Design in Snohomish County Residential and Commercial/Light Industrial Areas

Snohomish County Public Works Monroe dump station. Figure 2 illustrates the sampling routine for Seattle. Samples were collected at a Seattle transfer station except where on-site decant samples were taken to measure intra-truck variability.

Water

Samples of decant water were collected twice each day as water was drained from the tanks of the vactor trucks. A composite sample of approximately 9 liters was obtained by sampling directly from the decant hose or spout of the vactor truck into a large stainless steel bucket. Approximately equal aliquots (i.e. 3 liters each) of water from the initial, middle, and end portions of each decant were collected. The composite sample was then homogenized and subsampled by pouring directly into appropriate containers for the indicated analyses. Field measurements for water samples included pH, temperature, and specific conductance.

Sediment

After water was completely drained from the vactor trucks, the remaining sediment was dumped into a pile on the ground. Samples were scooped from this pile into a stainless steel bucket. An effort was made to collect samples that were representative in terms of moisture content and grain size. Once in the bucket, the sediment was homogenized (minimally prior to taking subsamples for volatile organics analysis). Subsamples were collected from this homogenate and placed into appropriate containers.

All sampling equipment was decontaminated prior to use by scrubbing with laboratory grade detergent (Alconox) followed by sequential rinses with tap water, deionized water, 6M hydrochloric acid, deionized water, and pesticide-grade acetone. Sample buckets were primed with decant water prior to sampling to eliminate any residual chemicals used in the decontamination process.

Laboratory Analysis and Data Quality

Table 2 summarizes the analytical methods used for vactor water and sediment. In general, the data quality objectives described in the sampling and analysis plan (PTI Environmental, Services 1991a) and the project proposal (Serdar, 1991) were met. However, limits of detection for semi-volatile organic compound analysis in sediment were one to two orders of magnitude higher than desired and one order of magnitude higher for pesticide/PCB analysis.

Decant water data were reviewed for qualitative and quantitative accuracy, validity and usefulness by PTI and the laboratories performing the analyses. Sediment data were reviewed by staff at the Manchester Laboratory. Data quality reviews are presented in Appendix B. All data were deemed acceptable for use without any qualification beyond that presented with the data.

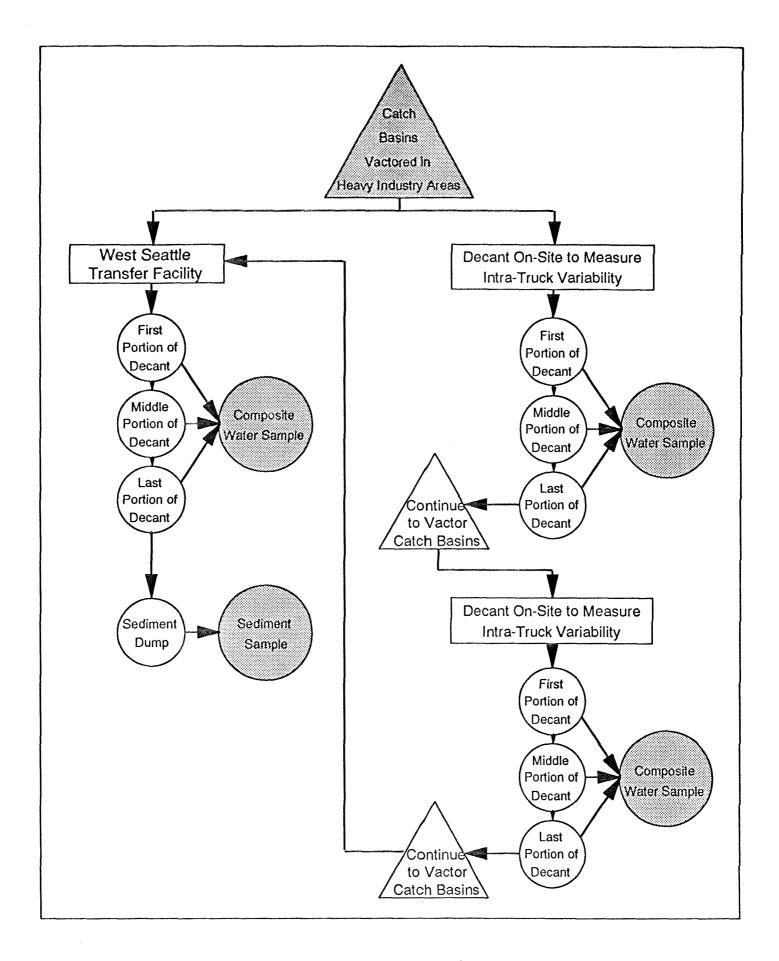


Figure 2. Schematic of Sample Design in Seattle Heavy Industrial Area

Table 2. Summary of Analytical Methods for Vactor Water and Sediment

Parameter	Method	Reference	Laboratory
WATER			
Ha	EPA 150.1	EPA, 1984	Columbia Analytical Services, Inc.
Conductivity	EPA 120.1	EPA, 1984	Columbia Analytical Services, Inc.
Hardness	EPA 6010	EPA, 1987	Columbia Analytical Services, Inc.
	SM 314A	APHA, 1985	
Fecal Coliform	SM 9221C	APHA, 1989	Columbia Analytical Services, Inc.
Biological Oxgygen Demand	EPA 405.1	EPA, 1984	Columbia Analytical Services, Inc.
Chemical Oxygen Demand	EPA 410.1	EPA, 1984	Columbia Analytical Services, Inc.
Oil and Grease	EPA 413.1	EPA, 1984	Columbia Analytical Services, Inc.
Total Organic Carbon	EPA 415.1	EPA, 1984	Columbia Analytical Services, Inc.
Total Dissolved Solids	EPA 160.1	EPA, 1984	Columbia Analytical Services, Inc.
Total Suspended Solids	EPA 160.2	EPA, 1984	Columbia Analytical Services, Inc.
Solids, settleable	EPA 160.5	EPA, 1984	Columbia Analytical Services, Inc.
Turbidity	EPA 180.1	EPA, 1984	Columbia Analytical Services, Inc.
Cyanide	EPA 335.2	EPA, 1984	Columbia Analytical Services, Inc.
Total Metals			
As, Cd, Cr, Cu,		***************************************	
Pb, Ni, Ag, Zn	AA/ICP/GFAA	EPA, 1987	Columbia Analytical Services, Inc.
Mercury (Hg)	CVAA	EPA, 1987	Columbia Analytical Services, Inc.
Volatile Organic Compounds	EPA 8240	EPA, 1986a	Analytical Technolgies, Inc.
Semi-Volatile Organic Compounds	EPA 8270	EPA, 1986a	Analytical Technolgies, Inc.
PCBs	EPA 8080	EPA, 1986a	Analytical Technolgies, Inc.
SEDIMENT			
Percent Solids	EPA 160.3	EPA, 1984	Sound Analytical Services, Inc.
	SM 2540 B	APHA, 1989	
Total Organic Carbon	EPA 415.1	EPA, 1984	Sound Analytical Services, Inc.
Total Petroleum Hydrocarbons	EPA 418.1	EPA, 1984	Spectra Laboratories, Inc.
Grain Size	Sieve-Pipet	EPA, 1986b	Soil Technology, Inc.
PP Metals (Total)	AA/ICP/GFAA	EPA, 1986a	Manchester Laboratory
Mercury (Hg)	CVAA	EPA, 1986a	Manchester Laboratory
Volatile Organic Compounds	EPA 8240	EPA, 1986a	Weyerhaeuser Analytical and Testing Services
Semi-Volatile Organic Compounds	EPA 8270	EPA, 1986a	Weyerhaeuser Analytical and Testing Services
Pesticides/PCBs	EPA 8080	EPA, 1986a	Weyerhaeuser Analytical and Testing Services

Quality assurance samples collected in the field included three VOC trip blanks for decant water and a duplicate split sediment sample to estimate analytical plus handling precision. Acetone and methylene chloride were the only compounds detected in the trip blanks. Acetone results were not reported in 15 of 16 samples because the blank concentration was greater than one-fifth of the analytical results (EPA "five times rule"). Methylene chloride was also found in the associated reagent blanks and results were not reported in 9 of 16 samples. Results for bis(2-ethylhexyl) phthalate, a common plasticizer, were not reported in four samples because of reagent blank contamination.

The relative percent difference (RPD; range as a percent of mean) between the split sediment samples (#'s 308140 and 308141) was excellent for most analyses. RPD was 27% for total petroleum hydrocarbon (TPH), 9% for toluene + ethylbenzene + xylenes, 4% for total PAHs, 1% for copper, 12% for lead, and 5% for zinc.

RESULTS AND DISCUSSION

Decant Water²

Results of conventional analyses of decant water are shown in Table 3. Samples from the industrial areas generally show the highest biological oxygen demand, chemical oxygen demand, and total organic carbon. Total suspended solids (TSS), turbidity, and fecal coliform levels were highly variable yet elevated in most cases. TSS levels ranged from 265 to 110,000 mg/L and were generally highest in samples from the industrial areas.

Table 4 shows metals and cyanide results. Comparison of decant water results to EPA water quality criteria for toxic substances in surface waters (EPA, 1986c) reveal numerous exceedances for metals and cyanide. These comparisons should be used with caution since 1) criteria are for surface waters and decant water is not necessarily discharged to a surface water, and 2) decant water is, in essence, a slurry and elevated concentrations of some analytes may be attributed to the high particulate fraction found in most samples.

Metals concentrations were generally higher in the industrial samples, probably a reflection of TSS levels (samples were not filtered). Figure 3 illustrates the positive correlations between arsenic, cadmium, chromium, copper, lead, and zinc concentrations and TSS. In each plot, however, the highest metal concentration appears to be an outlier, which suggests that TSS is not the sole determinant of metals concentrations. Arsenic showed the strongest relationship (R squared = 0.3653) while zinc showed the weakest (R squared = 0.2057). Cyanide was detected in 10 of 16 samples ranging from 0.02 to 0.07 mg/L.

²Results of decant water analysis are reported in *Characterization of Catch Basin Wastes: Draft Technical Memorandum* (PTI Environmental Services, 1991b).

Table 3. Results of Conventional Analysis of Vactor Decant Water - July, 1991

537 365 365 329 197 1110	
	475 365 329 189 197 1110
	``

MPN = Most probable number of fecal coliform bacteria colonies.

U = Undetected.

J = Estimated.

Indicates samples taken from the same vactor truck.

Table 4. Results of Metals and Cyanide Analysis of Vactor Decant Water - July, 1991

	Mercury Nickel Silver Zinc	0.0134 0.76 0.02 u 4.6 0.0159 0.61 0.02 u 6.1 0.0012 0.04 0.02 u 1.2 0.006 0.02 u 1.2 0.006 0.15 0.02 u 1.5	0.0005 U 0.04 0.02 U 0.73 0.0005 U 0.07 0.02 U 1.1 0.0007 0.18 0.02 U 1.4 0.0056 0.25 0.02 U 9.0	0.0032 1.3 0.03 18 0.022 0.35 0.02 0.97 0.0219 0.4 0.05 0 5.8 0.0218 0.4 0.02 0 5.8 0.0218 0.68 0.02 0 10 0.0239 0.72 0.03 0 10 0.0127 0.05 0 10 0.0127 0.03 0 10 0.0127 0.03 0 770
ng/L)	Lead	1.0	0.37 0.60 0.39 0.39	13 13 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
Metals (mg/L	Cyanide	0.03 0.02 0.01 0.01	0.01 0.01 0.01 0.00 0.06	0.07 0.03 0.04 0.04 0.01 0.01 0.01 0.01
	Copper	1.0 0.93 0.14 0.19	0.11 0.31 0.45	7.6 10.1 1.0 2.7 2.4 1.9 1.9
	Chromium	0.63 0.41 0.02 0.10	0.04 0.06 0.24 0.50	1.81 0.32 0.70 0.70 0.78 0.78
	Cadmium	0.02 0.05 0.01 0.01	0.01 U 0.01 0.01 0.03 0.08	0.12 0.04 0.05 0.05 0.05 0.05
Managarahan di Amerika da Amerika	Arsenic	0.31 0.59 0.04	0.01 0.02 0.05 0.08	1.24 0.14 0.52 0.68 1.54 0.92
:	Station Number	High-density Residential 1 2 3 16	Commercial/Light Industrial 4 5 6 7	Industrial 8 9 10 11 12 13 14 14

U = Undetected
J = Estimated
Indicates samples taken from the same vactor truck

Exceeds EPA acute and chronic freshwater criteria (EPA 1986c), see text for caveats.

Exceeds EPA chronic freshwater criteria (EPA 1988c), see text for caveats.

Note: Criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are hardness-dependent.

For hardness values, see Table 3.

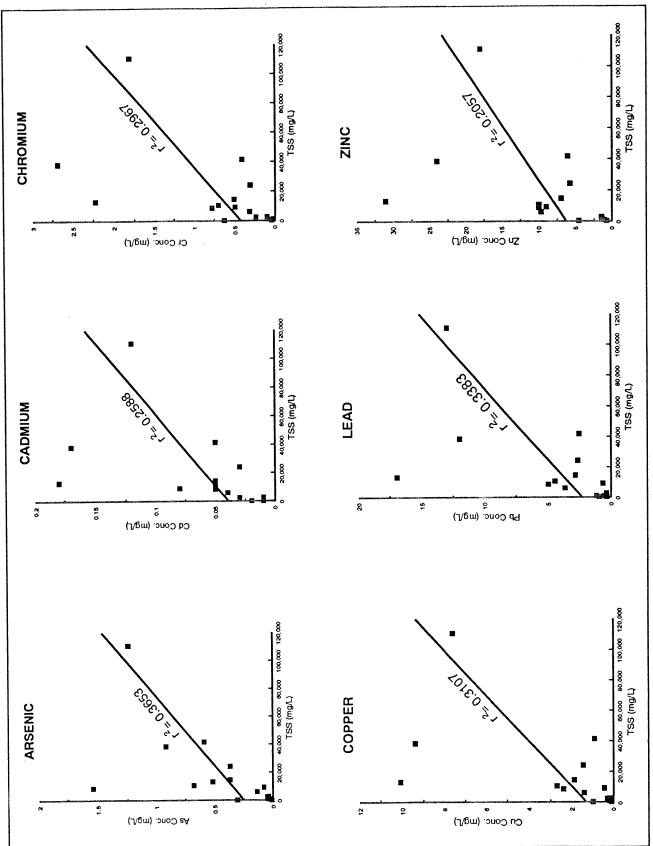


Figure 3. Relationships Between Total Suspended Solids and Concentrations of Six Elements in Vactor Decant Water Collected in July 1991

Several volatile organic compounds were detected in decant water (Table 5). The most frequently detected (in decreasing order; frequency of detection in parentheses) were toluene (15/16), xylenes (10/16), and ethylbenzene (8/16). These compounds are common petroleum fuel derivatives and are used in paints and thinners (PTI Environmental Services, 1991c).

Table 6 shows the results of semivolatile organics analysis of decant water. Phenol and naphthalene, the most frequently detected compounds, were found in four samples each concentrations ranging from 4 to 75 μ g/L. Three samples had 4-methylphenol at concentrations ranging from 4 to 33 μ g/L. Phenanthrene and 2-methylnaphthalene were found in two samples each at 2 to 7 μ g/L. The latter three compounds were found in industrial samples only.

Tentatively identified organic compounds in decant water are shown in Appendix C. They include numerous C7 - C10 hydrocarbons which are generally petroleum-derived. However, vactor decant water was not analyzed for TPH. PCBs and pesticides were not detected in any samples at detection limits of $0.5 - 1.3 \, \mu g/L$ (Table 7).

Sediments

Conventional analysis of vactor sediments are shown in Table 8. Total organic carbon levels were fairly consistent throughout (range = 1.2 - 2.2%). Grain size determinations show that about 60 - 80% of each sample was composed of sand.

Table 9 shows metals concentrations in vactor sediments. All thirteen priority pollutant metals were detected except for thallium. However, silver was detected in only one sample and antimony was detected in only two samples, and those analytical results were below minimum quantitation limits. Zinc, lead, and copper were present at the highest concentrations, and were elevated in the industrial areas compared to residential and commercial areas. Chromium was also elevated but concentrations did not appear to be strongly related to land-use.

Residential, commercial, and industrial vactor samples had mean lead and chromium concentrations of 92, 91, 170 mg/Kg and 84, 131, and 117 mg/Kg, respectively. Lead and chromium are constituents of the toxicity characteristic list described in Washington's dangerous waste regulations (Ch. 173-303 WAC). Solid waste may be designated as dangerous waste if concentrations of each of these metals is 5.0 mg/L or greater when analyzed using the Toxicity Characteristic Leaching Procedures (TCLP). Although TCLP was not conducted on the vactor sediment samples, some potentially qualify as dangerous waste based on the rule of thumb that solid waste with dry weight toxicant concentrations (ppm) exceeding the criteria by a factor of 20 are potential dangerous wastes. This qualification was met, on average, by vactor sediment samples from commercial and industrial areas.

Table 5. Results of Volatile Organic Compound Analysis of Vactor Decant Water - July, 1991

		Advantage of the state of the s				VOCs (ug/L)	ng/L)									
			Bromo-								Carbon					
Station Number	Acetone	Benzene	dichloro- methane	Bromo- form		Bromo- methane	B	2- Butanone	Carbon Disulfide		tetra- chloride	දූ දු	Chloro- benzene	Chloro- ethane	ro-	T
High-density Residential					: - -											
	8		ις	מ			2		Ψ,		5	n	S.	2		5
Ø	8	5 0	ς.	; ה	5 U	10	2	10 0	2	2	5	מ	2	c	10 6	5
ო	850 7		5				מ	10 0			2	מ	S	2		5
16	8		2				2				သ	מ	2	2		5
Commercial/Light Industrial																
4	8			ה ה			5	10 0	4)		5	n	3	n		5
5	80	5 U	S	מ	5 U	9	מ	10 0	5	2	2	2	5	2		2
9	B			ה ה	5 U		מ	10 0			2	2	2	מ	10	2
2	8			מ			מ	10 0	4,	2	2	۵	S	۵		5
Industrial																
œ	ω			5	2	5	2	10		5	5	۵	5	۵	10	5
> () t)			- 33	- 88		- 88			1		u			*
ສ (n c						5 3	5		s :	n u	5 \$	n u	s :		, :
- F	20 ec	2 C	o ic	5 S	o K		3 3		o va		3 kg	3 5) IO	נננ		5 5
12	ι α	7 2			8	*	מ	8		8	5	۲	3	٦	8	3
1 .) C				- 80						14		u		388	
20 4	o a		7	3 S	s :		3 \$			3 S	o v	3 2	o v			5 5
15	n 60	3 9 9	o vo) S	2		20	. c		a o	٠,5	· so	, 5	0	5
Trio Blanks																
1-81	140	5 0	r.				٦	10			2	۵	ß	מ		5
TB-2	50	2 6	5	2	2	2	2	10 0		5 U	3	מ	2	n	5	2
TB-3	16						מ				2	מ	2	2		5
B = Values not reported due to		Indicates comp	Indicates compound was detected	ted.										***************************************		1
blank contamination				į												
U = Undetected.		Indicates samp	Indicates samples taken from the same vactor truck.	ће ѕате vac	stor truc.	نږ										
J ≈ Estimated.																

¹³

Table 5. Results of Volatile Organic Compound Analysis of Vactor Decant Water - July, 1991 (Cont'd)

							VOC	VOCs (ug/L)					C	Cis Sis	Trans			
				Dibromo-		1,1-Di-	1,2-Di-	1,1-Di-	.1	1,2-Di-		1,2-Di-	1,3-Di-	2 .1	1,3-Di-			
Station	Chloro-	Chloro-		chloro-	ਹੁੰ ਹੈ	chloro-	chioro-	chloro-	<u>.</u> 0	chloro-	•	chioro-	chloro-	. 9	chloro-		Ethyl-	
Number	E IO	memane		memane	5	alle	alialie	900	D	0110110		al obalia	שלמו ת		מאסות		001170110	
High-density Residential																		
4	5	υ 10	۵		_	5 0	2	5					2				5	2
2	Ω.	0 10	۵		_		S	5					5			2	2	2
က	2	υ 10	5	2 5	מ	5 U	S	מ	5 0	5	>	2	۵	5 U	5		5	2
16	Ω.	U 10	מ		_		2	5					5			2		7
Commercial/Light Industrial																		
4	5	υ 10	٥		_		5	5			٥		5				S	2
. ro	· v	υ 10	٥		_		S	5			٦		5				5	2
ဖ	5		٥	5 (מ	5	5	מ	5	5	۵	22	٥	5 U		2	ιΩ	2
7	S		٥		_		3	5			۵		5				S	>
Industrial																		
80	ιΩ	ر 10	٦		_	-	ស	5	3		ġ	3	c	S C		3	2	2
Ø.	2	Q	5		_	S C	က	•	c w				5				4	•
10	c)	9 9	Þ		_		κn	,					5				1	•
11	S	OL 3	5		Ð	9 8	S	Ð	ာ အ		5		5	9		5	8	•
12	S.	υ 10	٦		_		5	ה					5				S	2
13	an a	Ot 3	5		7		s.	3					5			5	8	
4	to t		ъ:	to t	5 :	5 : u cu	to u	5 :	ာ : အ မ	ug u		י מו	5 :	: د س م	יי מיי	5 ;	es •	00000 000
C	9	2	3				G	3	3 0		3		3				•	
Trip Blanks																		
TB-1	2		2				ς.	5					5				2	2
TB-2	ည	υ 10		2	מ	5 C	Ω	מ	5	2	۵	22	מ	5 C	20	>	2	2
TB-3	5	υ 10	2		5	- 1	3	n	- 1		- 1	- 1	2	- 1			2	2
A. C.			1		7													
O = Citation		nancares o	3	אמונת אמפ תפנפרו	į													
J = Estimated.	000000000000000000000000000000000000000	;		٠														

Table 5. Results of Volatile Organic Compound Analysis of Vactor Decant Water - July, 1991 (Cont'd)

							VOC	VOCs (ug/L)	(7)							
50	c	-4- C. Joseph	- 4 - c	Mothylono			1,1,2,2- Tetra-	2 4 5	Tetra-	1, 1		1,1,1- Trichloro-		1,1,2- Trichloro-	4 6	
Number	Hexanone	Pentanone	9 6	Chloride	S	Styrene	ethane	92	ethylene	0	Toluene	ethane		ethane	e e	<u> </u>
High-density Residential		;		u	:					ŭ	96	Γ				
- c	2 5	> =	2 5	טירט) =	יי רי	o >	ט כ		ט קי		T	o C	. ~	ω O	5
າ ຕ	5 6))			, 5		. 5				32					2
16	10	. ,		Ω			מ	5 U		5 C	6			_		3
Cistoria tale in cistoria de constante de co																
Commercial/Light industrial	10	3		τυ	מ		מ	5		5	9 /	Γ	5 0			5
· ro	10	מ	10 U	c)	۵	2	מ	5		5 U	83		5 0		2	2
9	10	2	10 U	S	5		מ			5 U	, 5	2	5 C			2
7	10	מ	10 U	5	۵		מ	5 C		5 U	96 /					>
Industrial				!								ſ				
∞	10	2	ک د	80			5	5		5			2	2	S.	5
O	10	l a	10 U	1			a a	2		S	130	["]		3		5
10	10	3	3 2				3	S		ာ ဖ		····)		3	'n	5
##	10	5		m			3			s S		····]		5	vo	3
12	10	מ	7 5	В			2			5			- 3	۵	သ	5
13	10],	7	r'''			3	2 2			190			3	တ	5
14	01) 		י מס זו		ı م	5 :	ک نون		د د	14	····T	ru r	5 :	un u	5
ç :	2	5	, 2				5			200 200		***			,	\$
Trip Blanks															ſ	
TB-1	-1	n	10 C	13			2		5			מ		2	2	>
TB-2	10	n		80		ß	2	5 U	5	2	<i>U</i> 5	מ	2	מ	2	2
TB-3	10	Ú	10	-			a	- 1				U	- [a	2	2

U = Undetected.

Indicates compound was detected.

J = Estimated.

Indicates samples taken from the same vactor truck. B = Values not reported due to blank contamination

Table 5. Results of Volatile Organic Compound Analysis of Vactor Decant Water – July, 1991 (Cont'd)

		VOCs	(ug	/L)			
Trichloro-		Vinyl		Vinyl		Total	
ethene		Acetate		Chloride		Xylenes	
						_	
1	-			· · ·	-		U
l .	_						U
	-						U
5	U	10	U	10	υ	12	
5	U			10	U	5	υ
5	U			10	U	5	υ
5	U			10	U	5	U
5	U			10	U	32	
5	U	10	υ	10	U	7	
5	U	10	U	10	U	22	
5	U	10	U	10	U	7	
	U	10	U	10	U	8	
60 4 06060900000000000000000	U	10	U	10	U	7	
	U	10	U	10	U	160	
	U	10	U	10	U	20	
5	U	10	U	10	U	20	
5	U	10	U	10	υ	5	U
1							U
			-				υ
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	Trichloro- vinyl ethene Acetate 5	Trichloro- Vinyl ethene Acetate 5	ethene Acetate Chloride 5 U 10 5 U 10 U 10 5 U 10 U 10 5 U 10 U 10 5 U 10 U 10 5 U 10 U 10 5 U 10 U 10 5 U 10 U 10 5 U 10 U 10 5 U 10 U 10 5 U 10 U 10 5 U 10 U 10 <	Trichloro- Vinyl ethene Acetate Chloride 5	Trichloro- ethene Vinyl Acetate Vinyl Chloride Total Xylenes 5 U 10 U 5 5 U 10 U 10 U 7 5 U 10 U 10 U 10 5 U

U = Undetected.

-- Value not reported

Indicates compound was detected.

Indicates samples taken from the same vactor tr

Table 6. Results of Semivolatile Organic Compound Analysis of Vactor Decant Water - July, 1991

					SVOCs (ug/L)	(J/6					
Station	N-Nitroso- Dimethyl-	O C C C C C C C C C C C C C C C C C C C	ou!!!o	Bis(2- chloro- ethyl)	2- Chloro-	1,3-Di- chloro- benzene	1,4-Di- chloro- benzene	Benzyl	1,2-Di- chloro- benzene	2- Methyl-	
High-density Residential	1		1			1] :
0	0- 6	15	10 50 50	10 t	0r 02	50 0	50	201 2	20 20	2 2	> >
√ 0				20			20	20	20	υ 50	>
16	10 ,		10	5	10		5	5	0		٦
Commercial/Light Industrial											
4	10 /	U 10 U		5	9		9	9	10		2
5	10	U 75	10 0	10 0	10 0	10 U	9	01 0	<i>U</i> 10	υ 10	2
9	9	10 0	,	10	9			5	5		2
7	20 9	v 50 v	20	20	20		20	20	20		>
Industrial											
8		n 50 ι	20			50 U	20			υ 50	2
9 10	50	2 98 2 98 2 2 2	3 3 88 · 1	88	5 5 8 8	3 3 88	88	98 3	25 SS	2 S S S	33
11	000000	10 C						9 01		د 10 د 10	3 3
1. 55	*****	10	9	10	10	2000000	01	10	10	\$	
14		4		4	#		25	9	Q‡		э:
15	10	000000	2 20 2	20 01	20 01	2 2	2		2	2	5

 U = Undetected.

 J = Estimated.

 Indicates samples taken from the same vactor truck.

17

Table 6. Results of Semivolatile Organic Compound Analysis of Vactor Decant Water - July, 1991 (Cont'd)

				SVOC	SVOCs (ug/L)								
	Bis-(2-		Ž					ı					
	Chloro-	4-	Nitroso	Неха-				5-	i	2,4-			
Station	isopropyl)	Methyl-	-u-i0	chloro-	Nitro-	-osl		Nitro-	ā	Dimethyl		Benzoic	
Number	ether	phenol	propylamine	ethane	penzene	phorone		phenol		phenol		Acid	_
Lich descity Beeldential													
Tight-delisity nestdelinial	10 0	10 0	10 U			υ 10	>		۵	9	٦	18	2
· · ·			50 U	50 U	7 05	, 50	2	20	2	20	<u>'</u>	250	3
ı m	50 U	50 U	50 U	50 U		<i>u</i> 50	2		2	20	۵	32	
16	10 0	10 υ	10 υ				2		2	0	5	20	3
													•
Commercial/Light Industrial	;					0,	=	Ç	=	Ç	מ)2	
4)) 	0 01					٠ :)	2 (, :	.	
'n	10 0	10 0	10 0	10 0		70	2		>	2	>	กั	
9	10 0	10 U	10 <i>u</i>		10 (<i>u</i> 10	כ	9	מ	9	>	20	3
7	50 U	50 U	50 U	20 Ω			>	20	2	20	>	X	
1 1													
Industrial	7	33	// 05	20 0		<i>u</i> 50	٦	20	۵	20	٥	250	3
ဝ င				3888	- 33333		5	100000	5	20	Э	×	3
Ç.	3 S		7 05	20 6	95	200	5		5	20	5	য়	3
? ;	7 05				10	5	>	9	3	10	>	50	3
12	10 0	5	10 U	10 <i>U</i>	1		:	9	מ	5	מ	သိ	3
133	7 01		10 U	J 01	10	01 7	5	9	5	10	5	50	
14	9 OF	L	J 01	10 01	10	9 9	5	10	5	9	5	8	
15	J 01	2 4	2 01	7 OL		ر 10	n	2	3	Ç.	ъ	20	3
U = Undetected.		Indicates comp	Indicates compound was detected.										
•													

UJ = Estimated undetected value.

J = Estimated.

Table 6. Results of Semivolatile Organic Compound Analysis of Vactor Decant Water - July, 1991 (Cont'd)

				SV	SVOCs (ug/L)				
Station	Bis(2- chloro- ethoxy)	2,4- Dichloro-	1,2,4- Trichloro-	Naph-	4- Chloro-	Hexa- chloro-	4- Chloro- 3- Methyl	2-Methyl Naph- thalene	Hexa- chloro- cyclo- pendadiene
Number	тепапе	prierio	חפווקפוופ	וומומומ	D III				
High-density Residential	10 0		10 <i>u</i>	10 0	10 0	10 0	10 0	10 <i>u</i>	10 U
- 0	50 C		50 U		50 U			20 n	
	50 U	50 U	50 U	50 U	50 U	20 C	50 U	20 n	50 U
16	10 U		10 0		10 0	10 U	10 0	10 0	10 0
Commercial/Light Industrial									
4	10 0		10 0		10 0			10 C	
r.	10 U		10 0		10 0			10	
· •		10 U	10 0	9	10 0	10 0	10 <i>C</i>	10	10 0
7	20 π		20 n	20 n	20 n	50 U			20 n
Industrial							,	;	
ω	50 U		50 U	20 U	50 C	50 U	20 20 20		- 4
9 10 11	50 <i>U</i> 50 <i>U</i> 10 <i>U</i>	50 U 20 05 20 01	50 <i>U</i> 50 <i>U</i> 10 <i>U</i>	12 J 50 U 4 J	20 02 20 02 20 04	50 U 50 U 10 U	50 <i>u</i> 25 <i>J</i> 10 <i>u</i>	П	S S 2
12	10 0	3	10 <i>U</i>	10 0	10 <i>U</i>	10 U		10 U	ο 2
£ 4 4	2 01		9 of	10 0	3 01 U U U U U U U U U U U U U U U U U U	0 01 0 01 0 01	3 01 3 01 3 01	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2	333 I	3333			30 3	200			

Indicates compound was detected.

U = Undetected. J = Estimated.

Table 6. Results of Semivolatile Organic Compound Analysis of Vactor Decant Water - July, 1991 (Cont'd)

				SVOCs (ug/L)	ug/L)				
Station Number	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	2-Chioro- Naph- thalene	2-Nitro- aniline	Dimethyl phthalate	Ace- naph- thylene	3-Nitro- aniline	Acenaph- thene	2,4- Dinitro- phenol
High-density Residential	Ç	7 05	101	20	10 1) 0	50 u
- 2	20 6	250 U	20 C	250 U	20 n	50 C	250 U	50 U	250 U
က	50 U	250 U	50 U	250 U	50 U				250 U
16	10 U	50 U							
Commercial/Light Industrial		7	Ç	7 05	Ç		20 50	70 01	50 U
r ro	5 6	50 0	10 0	20 n	10 0	10 0	50 C	10 0	50 U
9 49	10 0	20 02	10 0	50 U				10 0	20 n
7	50 U	250 U	20 U	250 U	20 n	20 U	250 U		
Industrial									
ω	20 C	250 U	20 n	250 U	50 C	50 U	250 U	50 U	250 c
9	50 U	250 U 250 U	50 <i>u</i> 50 <i>u</i>	250 U 250 U	50 U 50 U	50 U 50 U	250 U 250 U		250 c
11	10 0	20 C					n 09		50 U
12	ا 10 د	20 C	ال 10 م	50 U	10 <i>ل</i>	10 <i>c</i>			50 U
<u> </u>	9 0t 5	90 to 20 to	2 0t 2 0t 3 0t	50 U 50 U 50 U	2 01 2 04 2 04	3 01 3 01 3 01	50 tr 50 tr 50 tr	9 0t	20 C C C
2	2				3000			(C)	

Indicates samples taken from the same vactor truck.

Table 6. Results of Semivolatile Organic Compound Analysis of Vactor Decant Water - July, 1991 (Cont'd)

					SVOCs (ug/L)	/L)					
Station Number	4-Nitro- phenol	Dibenzo- furan	2,4- Dinitro- toluene	2,6- Dinitro- toluene	Diethyl phthalate	4-Chloro- phenyl phenyl ether	Fluorene	епе	4-Nitro- aniline	2-Methyl- 4,6-Di- nitro- phenol	
High-density Residential	20			Ç	10						
- n	250 62	20 6	20 09	υ 50 C	20	u 50	, 5	50 C	250	<i>u</i> 250	5
ı m	250 W			20	50						
16				10	10						
Commercial/Light Industrial		,		Ç	,						
4 r		2 \$		5 5	5 5						
ი «		5 5			2 2	7 10) >	5 5	20	<i>u</i> 50	3
7	250 W	20 n	20 (n 20 n	20						
Industrial	Cac							20		11 250	
တ ထ	250 02		3333		20		90000	- 3333	250		
01 10	250 64	50	50 -	50 C	50	υ 50 υ 10	33	50 c	250	υ 250 υ 50	5 5 = =
12	50 W		8	10	10		ž	2	50		
13	30 m	10	30000	9	0		******	η 0	50		
14	30 CS	40		2 Ot 2	10		5	. I	8		
15	3 02 -				-	9 1		<u>ე</u>	9		

Indicates compound was detected.

U = Undetected. J = Estimated. UJ = Estimated undetected value.

21

Table 6. Results of Semivolatile Organic Compound Analysis of Vactor Decant Water - July, 1991 (Cont'd)

							SVOCs (ug/L)	J/Gr									
,	N- Nitroso-	4-Bromo- phenyl		Неха-	Per	Penta-					Di-n-						
Station Number	Diphenyl- amine	phenyl ether	D eq	chioro- benzene	chloro- phenol	chloro- phenol	Phenan- threne		Anthracene		butyl- phthalate	anth	Fluor- anthene	8	Benzidine		
High-density Residential															İ		
-	10 0	10	2	10 0			10	2	9	۵	0	٥	9	2	5		
0.	20 C	20	۵	50 U		250 U	50	۵	50	٥	20	2	20	2	200	2	
ო	20 n	20	2	50 U			50	۵	20	٦	20	٥	20	2	200		
16	10 <i>u</i>	10	2				5	٦	5	>	10	n	0	۵	5		
Commercial/Light Industrial																	
4	10 0		מ		_	50 U	10	2	5	۵	10	2	9	2	5	2	
52	10 0	10	٥	10 0	_	50 C	10	2	10	2	10	۵	5	2	5		
9	10 0	10	۵	10		50 C	10	2	10	2	10	2	9	2	5	2	
7	50 U		5	50 U	_	250 U	50	>	20	Ω	20	n	20	מ	200		
Industrial	general and a second																
80	50 U	50	n	50 U		250 U	50	2	50	2		۵	20	2	200	2	3
9	50 5		5 5	7 09 0		250 U	50	3 3	50	55	8 S	55	88	55	88	3 3 7 7	
2.11	7 01	• • • • • • • • • • • • • • • • • • • •	. 5						10			5	0.	3	5	•	
12	υ 0t	5	ב					כ	9	ב	1	5	9	۵	Š	- 8	3
13	10 6	9	'n			20 n			0		50	\neg	Ç.	5	2		
14		Q :	5 :	э С.			֓֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓	5	\$	5 :] ; c	e °	s[·	25	5 : 0 :	
15	ם פר		5	2		2 20		3333	2	•	555.03		•		5		***

Indicates compound was detected.

U = Undetected. J = Estimated.

22

Table 6. Results of Semivolatile Organic Compound Analysis of Vactor Decant Water - July, 1991 (Cont'd)

							SVOCs (ug/L)	(ng/L)								
Station Number	Pyrene	Butyl benzyl phthalate	الة خراخ ا	3,3'- Dichloro- benzidine	מ	Benzo(a) anthracene	E Phth	Bis(2- ethyl- hexyl- phthalate	Chrysene		Di-n- octyl phthalate	ш "	Benzo(b) fluor- anthene	<u>α</u> α	Benzo(k) fluor- anthene	
High-density Residential	10	7	70	50	7			29	10	۵	10	2		3	0	>
. 0			20 02	100	n	20 6	٦	В	20		20	۵	20	5	20	>
ಣ	20 (2	50 U	5	۵		 	20 C	20		20	מ		מ	20	5
16		c -	10 U	20	۵		מ	10 <i>U</i>	10	n	10	2		מ	5	>
Commercial/Light Industrial																
4	10 6	2	10 U	20	מ		2	В	9	٥	9	2		2	9	>
5		7	10 U	20	٥		2	മ	9		9	a		מ	0	>
9	40	7	10 U	20	۵	10 0	S	B	5	۵	5	2	9	מ	9	>
7		Σ .	20 U	100	מ		<u> </u>	440] 20		20	2		3	20	>
Industrial																
ω		2	50 U	100	۵		מ	50 u	50	2	20	٥		2	20	۵
9 10 11	50 (744	20 C C C C C C C C C C C C C C C C C C C	90 t 8		50 20 30 30 30	222	20 C 20 C 10 C	50 50 10	555	50 50 10	333	50 50 10	533	50 50 51	5 5 5
12	10 6	ς 1	10 U	20	۵	:	٦	10 U	5	٥	5	۵		۵	5	2
13		n	2	8			∐ >		o. [10	ŋ		5	9	S
4t 5t	2 2 2 2)	3 3 2 2	នន	33		5 5	5 5 2 2	22	55	e e	33		55	2 2	5 5
					NAMES OF THE OWNER, OWN		,									

U = Undetected.

Indicates samples taken from the same vactor truck.

Indicates compound was detected.

J = Estimated.

B = Compound detected in

associated reagent blank

Table 6. Results of Semivolatile Organic Compound Analysis of Vactor Decant Water – July, 1991 (Cont'd)

			SV	CS	(ug/L)			
			Indeno		Dibenzo			
			(1,2,3-		(a,h)		Benzo	
Station	Benzo(a)		cd)-		anth-		(g,h,i)	
Number	pyrene		pyrene		racene		perylene	
High-density Residential								
1	10	U	10	U	10	U	10	U
2	50	U	50	UJ	50	U	50	UJ
3	50	U	50	UJ	50	U	50	UJ
16	10	U	10	UJ	10	U	10	UJ
Commercial/Light Industrial								
4	10	U	10	UJ	10	U	10	UJ
5	10	U	10	UJ	10	U	10	UJ
6	10	U	10	UJ	10	U	10	UJ
7	50	U	50	U	50	U	50	U
Industrial								
8	50	U	50	UJ	50	U	50	UJ
9	50	Ų	50	w	50	U	50	W
10	50	U	50	υ	50	U	50	U
11	10	U	10	U	10	υ	10	U
12	10	U	10	UJ	10	υ	10	UJ
13	10	υ	10	υJ	10	U	10	UJ
14	- 10	U	10	UJ	10	U	10	UJ
15	10	U	10	W	10	U	10	W

U = Undected

Indicates samples taken from the same vactor truck

UJ = Estimated undetected value

Table 7. Results of PCB Analysis of Vactor Decant Water - July, 1991

				PCBs (ug/L)			
Station Number	Aroclor- 1016	Aroclor- 1221	Aroclor- 1232	Aroclor- 1242	Aroclor- 1248	Aroclor- 1254	Aroclor- 1260
High-density Residential							
~	η 9.0	1.3 U	1.3	0.6 U	0.6 U	0.6 U	0.6 U
ıσ	0.5 U	1.0 U	1.0 0	0.5 U	0.5 U	0.5 U	0.5 <i>U</i>
Commercial/Light Industrial							
4	0.5 U	1.0 0.		0.5 U	0.5 U	0.5 U	0.5 U
י ז				0.5 U	0.5 U	0.5 U	0.5 U
ກແ	0.5 0		1.0 0	0.5 U	0.5 U	0.5 U	0.5 U
2 /		1.0 0.1	1.0 0	0.5 U	0.5 U	0.5 U	0.5 U
امتعورته							
α α	7 90	1.1 0	1.1 0		0.6 U	0.6 U	η 9.0
> ;	0.5 0	1.0 0			0.5 U	0.5 U	0.5 U
- 7	0.5 0	1.0 0	1.0 0	0.5 U	0.5 U	0.5 U	0.5 U
5	0.5 0	1.0 0			0.5 U	0.5 U	0.5 U
2	9						

U = Undetected.

Table 8. Results of Conventional Analysis of Vactor Sediment - July, 1991

	15 15-Dup.	1/30	308140	3	2		00 16000 16000		7 20 3	81 70 81	10 9 11	
Industria	11 12				8		19000 15000		ន	22	œ	•
	ω.	1/29	308137	ř	?		19000		œ	75	13	•
	7	7/25	308136	ş	7.7		18000		17	2	19	
Commercial	9	7/25	308135	8	8		12000		10	49	21	
Comn	5	7/24	308134	7	5		22000		9	ន	28	
	4	7/24	308133		2		15000		19	7	5	
	16	7/31	308142		6		17000		17	72	=	
ential	3	7/23	308132	,	69		16000		10	74	15	
Residential	2	7/23	308131		74		13000		7	75	16	
	1	7/22	308130		73		14000		56	59	12	
Land-Use:	Station #:	Date:	Lab Log#:		Percent Solids (%)	Total Organic	Carbon (mg/Kg, dry)	Grain Size (%)	gravel (> 2000um)	sand (2000-62um)	silt (62-2um)	

Table 9. Results of Metals Analysis of Vactor Sediments (mg/Kg, dry weight basis) - July, 1991

ue	and-Use.		Resi	Residential	la.				Commercial	nercial				Industrial			-
Ì	**************************************	+	6		6		9	4	5	9	7	8	11	12	15	15-Dup.	Jup.
กั	otation #.	- 1	1100		7/23	7	3	7/24	7/24	7/25	7/25	7/29	7/29	1/30	1/30	2/2	8
Lat	Lab Log#:	308130	308131	ĕ	308132	308	308142	308133	308134	308135	308136	308137	308138	308139	308140	308	141

Antimony		3.7 PNJ	e No	S	5.1 PNJ	Z	S CN	m	PNJ 3 UN	NO SO	NO CN	S S	က	UN 3	S NO	2 5	ν 6
Arsenic		6.1	4.6		4.0		6.9	3.6	8.8	8.9	6.4	6.6	7.8	5	18		17
Borvillium		0.53	0.42	ů.	0.41		0.356 P	0.47	0.47 P	98°0	0,43 P	0.35 P	0.41	0.41	я 0.44	•	0.44
Cadmium		0.7 P	1.2 P	۰	1.2 P		0.7 P	1.2 P	1.6	1.1 P	1.8	2	-	1.2 F	<u>т</u>	۵	1.5
Chromium		87	131		89		28 N	118	86	108 NJ	J 200 NJ	. 154 NJ	241 NJ	r	N. 43	2	34 A
Connec		.	27		88		92	56	077	28	27	286	23	8	186		184
Lead		57	107		141		65	85	128	47	105	194	181	178	147	•	130
Mercury		0.10 N	0.07	z		z	0.10	0.04 P	0.15	0.06 N	0.11 N	0.07 N	0.13 x	4 0.13	0.14	0	0.17
Nickel		41	88		1		8	98	51	æ	84	47	88	8	8		**
Selenium		0.2 P	0.2 u	כ	0.4 P	a	0.2 U	0.2 u	, 0.2 p	0.4 P	8.0	0.2 U	0.2 ∪	0.2	u 0.2	5	0.2 ∪
Silver		0.3 UN	0.3 UN	Š	0.3 UN	Š	0.3 UN	0.3 UN	NU 8.0 NI	N 0.3 UN	N 0.3 UN	0.51 PN	0.3	UN 0.3	UN 0.3	N S	0.3 S. CN
Thallium		0.25 บ	0,25 u	Э	0.25 u		0,25 u	0.25	, 0,25 u	0,25 u	0,25 u	0,25 u	9220	0.25	0.25	9 5	o.25 c
Zinc		8	135		153		174 J	206	247	140	241)	558	236	262	J 295	7	280 J
	1 11 1 400000	700															

U=Undetected
N=Spiked sample recovery not within control limits
J=Estimate
P=Analyte was detected below the minimum quantitation limit

Results of volatile organics analysis of vactor sediments is shown in Table 10. Tentatively identified organic compounds in vactor sediments are shown in Appendix D. Toluene, xylenes, and ethylbenzene were the most frequently detected volatile organic compounds, and like decant water, the highest concentrations were generally found in samples from the industrial areas. Samples from the industrial areas had concentrations of these compounds ranging from 9 to $3300~\mu g/Kg$.

Table 11 shows the results of semivolatile organics analysis of vactor sediments. PAHs were the predominant semivolatile organic compounds detected in sediments. PAHs are formed during the incomplete combustion of organic material, especially fossil fuels (PTI Environmental Services, 1991c). Samples collected from residential areas had the highest total PAHs (mean = $49,000~\mu g/Kg$) compared to industrial and commercial areas (means = 24,000~and 18,000 mg/Kg, respectively). Table 12 shows a comparison of vactor sediment data with cleanup criteria from the Model Toxics Control Act cleanup regulation (MTCA; Ch. 173-340 WAC). MTCA cleanup levels for carcinogenic PAHs in generic soils is exceeded, on average, in vactor sediment samples from all three land-uses categories. The residential vactor sediments also exceeds MTCA cleanup levels for industrial soils.

Results of TPH analysis of vactor sediments are also included in Table 11. TPH levels were substantially higher in sediments from commercial and industrial areas (2700 and 2600 mg/Kg, respectively) compared to residential sediments (730 mg/Kg). Mean TPH concentrations in all three land-use categories exceed MTCA cleanup levels for generic and industrial soils (Table 12).

None of the 27 pesticide/PCB compounds were found at detection limits ranging from 22 to 540 μ g/Kg (Table 13).

CONCLUSIONS

- Vactor decant water, when not filtered or allowed to settle, contains high concentrations of solids.
- 2) Cyanide and metals concentrations in vactor decant water frequently exceed EPA water quality criteria for surface waters. This, in part, may be a reflection of the high concentrations of suspended solids. There is a positive correlation between metals and total suspended solids concentrations in the decant water samples. However, this correlation is not always strong, implying that high dissolved metals concentrations may also be present.
- 3) Toluene, xylenes, and ethylbenzene are the most frequently detected organic compounds in decant water and the most frequently detected volatile organics in vactor sediments.

Table 10. Results of Volatile Organic Compound Analysis of Vactor Sediment (mg/Kg, dry weight basis) - July, 1991

Station #: 1 2 7/22 7/23 7/22 7/22 7/22 7/22 7/22 7/	308132 7/31 308132 308142 15 U 17 U	7724 308133 3 14 U 14 U 14 U 17 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U 20	7724 308134 16 U 16 U 16 U 18 U 8 U 8 U 8 U 8 U 8 U 8 U 8 U 8 U 8 U	7/25 308135 308135 30 14 U 14 U 7	77 7/25 308138 15 U 15 U 15 U 25 UJ 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U	15 U 15 U 15 U 15 U 15 U 7	11 729 308138 14 U 14 U 14 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U	12 308139 14 U 14 U 14 U 14 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U	15 7/30 308140 16 U 16 U 140 UJ 8 U 8 U 8 U 8 U 8 U 8 U 8 U	15-Dup. 7730 308141 1 1 4 U 1 1 1 1
Date: 7/22 7/23 7/2 Lab Log#: 308130 308131 3081 Lab Log#: 308130 308131 3081 Lab 13 U 14 U Lab 13 U 14 U Lab 14 U Lab 13 U 14 U Lab 14 U Lab 15 U Lab 16 U Lab 16 U Lab 17 U Lab 18 U Lab 19 U	1817 1918 1918 1918 1918 1918 1918 1918						7/29 308138 14 14 14 17 7 7 7 7 7 7	7/30 308139 144 14 14 7 7 7 7	308140 51805 51 50 CU 50	
tide 13 U 14 U 14 U 15 U 15		**************************************	WWW WWW WWW WWW WWW WWW WWW WWW WWW WW			3000 3000 300 1 l	- 444	- 444		****
transe (total) 7 U 7 U 7 U 14 U 150 J 14 U 150 J		30000 30000 30000	9000 9000 9000			3000 0000 000 1 	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		****
13 U 14 U 13 U 14 U to t	ココココココココココココココココココココココココココココココココココ	**************************************	3000 S000 S000			30000 00000 0000 1	- - - - - - - - - - - - - - - - - - -	4 4 6 8 6 6 6 6 6 6		****
transe (total) 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7	⊅ ⊃ ⊙ ⊃ ⊅ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ± 5 ± 5 ± 5 ± 5 ± 5 ±	3000	3000 S000 S000	30000 30000 S	3333	33333 33333 3333 1 1	# · 8 · » · · · · » 4	# - 8		
tide 55 UJ 150 J tide 7 U 7 U thane there (total) 7 U 7 U thane 7 U 7 U thane 13 U 11 J oethane 7 U 7 U thorethane 13 U 7 U cropane 7 U 7 U topane 7 U 7 U cropane 7 U 7 U topane 7 U 7 U	ມ ຫຼັງ ສ ນ ນ ນ ສ ພັງ ນ ນ ສ ສ ທິ ສ ສ ສ ສ ສ ສ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ ກ	30000 30000	\$ \$6000 Section 1	8 30000 30000 8		3 (2000) (2000)	- 8 · * · · · * *	- 8 - 2 2		
55 UJ 150 J thane. 7 U 7 U thane. (total) 7 U 7 U thane 7 U 7 U thoride 7 U 7 U thoride 7 U 7 U tropane 7 U 7 U		33333	30000 SSSSS	30000 30000 3	3333	30000 (0000)	8 - + + 4	8 - 11 - 1 - 1	04- 04- 08-08-08-08-08-08-08-08-08-08-08-08-08-0	8888 8888 8888 8888 8888 8888 8888 8888 8888
thene (total) 7 U 7 T U	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	****	30000	レヤレレレ 4 レレ ンコンンコンンン	~ * ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	30000 (0000 1)	L L L L L Z	r r r r r		ィギィィンド 4 ィ ココココココココ
thane (total) 7 U 7 thane (total) 7 U 7 thane (total) 7 U 7 thane 7 U 7 thather 7 U 7 thoride 7 U 7 thoride 7 U 7 tropane 7 U 7	20022002 ******************************	3333	2000	*	* * * * * * * * * * * * * * * * * * *	30000 (0000 1	r,,,,, <u>4</u>	* * * * * *	ا * * * * * * * \$ ت ت ت ت ت ت	* ^ / ^ * 4 / \$
thane (total) 7 U 7 thene (total) 7 U 7 thane 7 U 7 thane 7 U 7 thane 7 U 7 thoride 7 U 7 tropane 7 U 7	ت د د د د د د د د د د د د د د د د د د د		9. 300000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	8 (8888) 		7 7 7	0 0 0 0 0 € 2 2 2 2 3 3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
thene (total) 7 U 7 thane 7 U 7 WEK) 13 U 11 oothane 7 U 7 hloride 7 U 7 ropane 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3333	300000	レケギ <u>4</u> ケケ. コココココ	0	(8883)	7	7 7	* * * * * * * * * * * * * * * * * * *	~~~ ~ つつ ä つつ
thane 7 U 7 VEK) 13 U 11 oothane 7 U 7 hloride 7 U 7 ropane 7 U 7 oropropene 7 U 7 ropane 7 U 7 oropropene 7 U 7 ropane 7 U 7 oropropene 7 U 7 ropane 7 U 7 rop	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00000	300000	ン な 4 と と ひ ひ ひ ひ ひ	7 U T U T U T U T U T U T U T U T U T U	(2003)	7 7 7	7	8 8 E	7
thane 7 U 7 VEK) 13 U 11 oethane 7 U 7 shloride 7 U 7 ropane 7 U 7 ropane 7 U 7 ropropone 7 U 7 ris 7 U 7 ris 7 U 7 owethane 7 U 7 oethane 7 U 7 ris 7 U 7 r	3 - 0 0 2 8 - 7 8 8 4	00000	200000	# 4	7 U 15 U 7 U 0 7	68883 1	_ _ 4	*	- 8	7 7 7 W
MEK) 13 U 11 oothane 7 U 7 hloride 7 U 7 ropane 7 U 7 ropane 7 U 7 ropane 7 U 7 oropropene 7 U 7 ropane 7 U 7 oropropene 7 U 7 ropane 7 U 7 odethane 7 U 7	د ال ال عاد 1	8	8	4- U	15 U 7 U 0 7	1 1	١.		= 4	47 U 7
oethane 7 U 7 shloride 7 U 7 methane 7 U 7 ropane 7 U 7 omethane 7 U 7	" = c c	> ^ C C)))	7			20 J)	7
13 U 14 omethane 7 U 7 ropane 7 U 7 ropane 7 U 7 ropropene 7 U 7 reaction 7 U 7	> *	7 0		O .	7 O) ,	2	ے د	
13 U 14 omethane 7 U 7 ropane 7 U 7 ropropene 7 U 7 ris 7 U 7 ris 7 U 7 omethane 7 U 7	200			ののののでは、このでは、なっているので			7 0	7	⊃ &	7 U
omethane 7 U 7 ropane 7 U 7 oropropene 7 U 7 ive 7 U 7 omethane 7 U 7 oethane 7 U 7	0	14 U	18 U) **	15 U	15 U	n ##	3 **	J 16 U	n ##
Apropene 7 U 7 propene 7 U 7 propene 7 U 7 ethane 7 U 7 thane 7 U 7	7 U 8 U	0 7	0	م <i>د</i>	7 U	0 Z	7 U	7	ر 8 د	7 U
propene 7 U 7 thane 7 U 7 thane 7 U 7 thane 7 U 7	7 U 8 U	0 Z	⊃ ø	7 0	7 U	7 U	7 C	7		۷ 0
7 U 7 ethane 7 U 7 thane 7 U 7	7 U 8 U	7 0	⊃ ∞	7	7 U	7 U	7 0	^		7 0
7 0 7 7 0 7 7 0 7 7 1 7 7 7 1 7 7 7 7 1 7 7 7 7	7 U 8 U	> *	⊃ *	5	⊃) ·	7 6	•	n *	3 2
chloroethane 7 U 7	7 U 8 U	0 Z	⊃ «	7 U	7 U	7 U	7 U	7	⊃ 8 T	7 U
7 11 7	7 U 8 U	7 U	⊃ ∞	م د	7 0	7 0	7 U	7	⊃ % ∩	م د
	7 U 8 U	7 U		7 C		7 U	7 U	7 0.3	∞	7 0
trans-1,3-Dichloropropene 7 U 7 U	0 8 O £	3 K	⊃ %))		3 C	****	•	50	3 K
Bromoform 7 U 7 U	7 U 8 U	0 Z		0 V	7 U	7 U	7 U	7		7 0
4-Methyl-2-Pentanone 13 U 14 U	15 U 17 U	<u>‡</u>		14 U				4	16	7 0
2-Hexanone 13 U 14 U	15 U 17 U	14 U	16 UJ	14 U		15 U		14	J 16 U	7 0
Tetrachtoroethene 7 U 7 U	n 8 n 4	3 ^	33 8	⊅		7 6	3	*	00	2 C
1,1,2,2-Tetrachloroethane 7 U 7 U	7 U 8 U	7 U	3	7 U	۰ 2	7 U	7	7	8 U	7 U
Toluene 83 160 7	780 D 54	140	680 DJ) >	120 J	3300 D	1300	900	J 1200 D	1300 D
Chlorobenzene 45 7 U	7 0 8 0	0 Z)))	7 UJ	0 7	7 UJ	U 7 U	J 8 UJ	7 U
Ethylbenzene 7 U 7 U	10 1 10	9 K	8 W) 1	3 ,	22	3 .	7 6 F	190 1	140
Styrene 7 U 7 U	0 8 U 7	7 U	ه س	م <i>د</i>	ر م	0 7	3 ^		∞	7 U
Total Xylenes 7 U 9 J	18 J 61	7 U	? 8	7	14 J	110	198 J	34	1400 D	1600 D

Table 11. Results of Semivolatile Organic Compound Analysis of Vactor Sediment (mg/Kg, dry weight basis) - July, 1991

Land-Use:		Residentia	ntial			Commercia	rcial				Industrial		
Station #:	1	2	က	16	4	2	ဖ	7	œ :	11	12	15	15-Dup.
Date: Lab Log#:	7/22 308130	7/23 308131	7/23 308132	7/31 308142	7/24 308133	7/24 308134	7/25 308135	7/25 308136	7/29 308137	7/29 308138	7/30 308139	7/30 308140	308141
Phenol	B90 U	7200 U	3800 U	2800 U	∩ 006	4100 U	O68	3800 U	3900 n	J 4600 U	4500 U	4900 U	2400
Bis(2-Chloroethyl)Ether	068	7200 U	3800 ∪	2800 U	∩ 006	4100 U	068	3800 ∪	3900	J 4800 U	4500 U	4900 U	2400
2-Chlorophenol	068	7200 U	3800 ∪	2800 U	∩ 006	4100 U	O68	3800 ∪	O 0068	J 4600 U	4500 U	4900 U	2400
1,3-Dichlorobenzene	n 068	7200 U	3800 U	2800 U	⊃ 86 6	180 C	D 088	3800 U	n 0068	1 4800 U	4500 U	D 008*	2400
1.4-Dichlorobenzene	⊃ 068	7200 U	3800 ∪	2800 U	∩ 006	4100 U	⊃ 268	3800 ∪	∩ 0068	J 4800 U	4500 U	∪ 0064	2400
Benzyl Alcohol	068	7200 U	3800 ∪	2800 U	O 006	4100 U	O68	3800 ∪	3900	J 4600 U	4500 U	4900 ∪	2400
1.2-Dichlorobenzene	068	7200 U		2800 U	O 006	4100 U	O68	3800 U	3900	J 4600 U	4500 U	4900 U	2400
* Contraction Col.	- 33	- 88	- 0	ti onee	- 33	- 222	11 400	- 333	T UUDG		- 333	II WOD	W.74
Z-Methyphenon	***	2 202		787			3	3	2000	3			
Bis(2-Chloroisopropyl)Ether	900 N	7200 U	3800	2800 U	O 006	4100 U	O68	3800	3900		4500 U	4900 O	2400
4-Methylphenol	310	7200 U	3800 ∪	1100 J	260 J	1500 ל	∩ 068	430	1500	4600 U	540	7 086	1300
N-Nitroso-di-n-Propylamine	068	7200 U	3800 ∪	2800 U	∩ 006	4100 U	⊃ 068	3800 ∪	0068	J 4800 U	4500 U	0064	2400
Hexachioroethane	n 068	7200 U	3800 U	2800 U	23 006	4100 U	£ 890 U	3800 U	7 0068	1 4600 U	4500 U	4900 U	2400
Nitrohanzana	088 □	7200	3800	2800 U	⊃ 006	4100 □	∩ 068	3800 U	O068	14600 ∪	4500 U	- 0064	2400
o do		7200	3800	2800	200	4100	1008	3800	3000	1 4800	4500	4900	2400
priority and		20021	2000	0000	2 2	7 7 6 6 7	8 8	0 0000	2000	1 4600	1500	2004	5
z-inidophelloi	50	0 007/	- 33	7 7007		3) }	2000	2000	200	3	3	
2,4-Utmethy(phenot	20 068	7200 C	2880	2800 C	3 [2 BOL 2	2008	3800	3	3 20 2	3		
Benzoic Acid	120 J	35000 U	18000 ∪	14000 U	95 J	20000 C	4300 U	200 r	19000 C	J 22000 U	22000 U	24000 O	12000
Bis(2-Chloroethoxy)Methane	068	7200 U	3800 ∩	2800 U	O 006	4100 U	O68	3800 U	3900	J 4600 U	4500 U	4900 U	2400
2,4-Dichlorophenol	068	7200 U	3800 ∪	2800 U	∩ 006	4100 U	068	3800 ∪	O068	J 4600 U	4500 U	4900 U	2400
1.2 4-Trichiombenzens	n 068	7200 U	3800 U	2800 U	: ::::::::::::::::::::::::::::::::::::	4100 U	D 068	3800 U	3900	1 4600 U	4500 U	D 0067	2400
Nanhthalana	2008	7200	L. 084	2800 U		4100	 068	3800	3900	730	4500 U	7 086 1	510
Chloroppilino	2 2	1200	1	2000	2 6	200	200	1 0000	0000	ł	4500	1000	2400
4-Cnloroaniine	0 0 0	0 007/		7 000	200	3 :	2 3	0000	noes	200	900	3 6	\$ 3
Hexachlorobutadiene	⊃ 068	7200 O		2800 U	⊃ 86	4100	O68	3800 0	3900	7 4600 C	4500 U	0064	2400
4-Chloro-3-Methylphenol	D 068	7200 G	D 0088	2800 U	3 8	2 8 2 3	3 988 -	3800 U	7 0068 1	1 4600 U	1500 U	2000 2000	268
2-Methylnaphthalene	∩ 068	7200 U	3800 ∪	2800 ∪	∩ 006	4100 ∪	∩ 068	3800 ∪	C 089	2200 J	4500 U	1000	88
Hexachlorocyclopentadiene	∩ 068	7200 U	3800 ∪	2800 U	O 006	4100 U	O68	3800 ∪	3900	7 4800 U	4500 U	4900 U	2400
2,4,6-Trichlorophenol	∩ 068	7200 U	3800 ∪	2800 U	O 006	4100 U	∩ 068	3800 ∪	O068	J 4600 U	4500 U	4900 U	2400
2.4.5-Trichlorophenoi	4300 U	\$5000 U	18000 U	14000	¥400 U	20000 U	£300 U	n 00061	19000	1 2200G U	22000 U	24000 U	12000
2-Chloronaphthalene	⊃ 068	7200 U	3800 ∪	2800 ∪	⊃ &	4 ∪ 0014	⊃ 88	3800 ∪	⊃ 2800	∪ 004	4500 U	∪ 0064	2400
2-Nitroaniline	4300 U	35000 U	18000 U	14000 U	4400 U	20000	4300	19000	19000	U 22000 U	22000 U	24000 U	12000
Dimethyl Phthalate	088	7200	3800	2800	000	780	2 00	3800	3000	11 4800 11	4500	7000	2400
months minara	200))		- 1	200		200	3	3	3	
Acenaphotylene) }	3 :	5	5 7687	3	3	200	3		3	200	3	
2,6-Dinitrotoluene	⊃ 068	7200 U	3800	2800 ∩	006	4100 C	⊃ 068	3800	3900	J 4600 U	4500 U	4900 D	2400
3-Nitroaniline	4300 U	35000 U	18000 U	14000 U	4400 U	20000 U	4300 ∪	19000 U	19000 U	J 22000 U	22000 U	24000 U	12000
Acenaphthene	∩ 068	2400 ∫	3800 ∪	2800 ∪	O 006	4100 C	∩ 068	3800 ∩	3800	J 820 J	4500 U	4900 U	2400
2,4-Dinitrophenol	4300 C	25000 U	18000 U	14000 U	4400 U	20000	D 008#	n 00061	19000 F	1 22000 U	22000 U	24000 U	1200
4-Nitrophenol	4300 U	35000 ∪	18000 ∪	14000 U	4400 U	20000 ∪	4300 ∪	19000 U	19000 U	J 22000 U	22000 U	24000 U	1200 2000
Dibenzofuran	990 U	7200 U	3800 ∪	2800 U	O 006	4100 U	068	3800 U	3900	J 710 J	4500 U	4900 U	2400

Table 11. Results of Semivolatile Organic Compound Analysis of Vactor Sediment (mg/Kg, dry weight basis) - July, 1991 (Cont'd)

Station #:			202				<u> </u>				Hudonia		
	-	2	3	16	4	5	9	7	œ	11	12	15	15-Dup.
Date.	7/22	7/23	7/23	7/31	7/24	7/24	7/25	7/25	7/29	7/29	1/30	7/30	1/30
Lab Log#:	308130	308131	308132	308142	308133	308134	308135	308136	308137	308138	308139	308140	308141
9.4-Dinitrotoluene	13068	1200 11	3800 U	2800 U	n 006	4100 U	O68	3800 U	3900	4600 U	4500 U	4900 U	2400
City Dhithalate				2800 U	∩ 006	4100 U	∩ 068	3800 ∪	3900	4600 U	4500 U	4900 U	2400
4-Chlorophenyl Phenylether	O68		3800	2800 U	O 006	4100 U	068	3800 ∪	O 0068	4600 U	4500 U	4900 ∪	2400
Fluorene	n 068	1100	470 3	2800 U	⊃ 8	F 099	D 88	3800 U	n 0068	4600 G	450d U	J 0067	2400 U
4-Nitroaniline	4300 U	35000 U	18000 U	14000 U	4400 C	20000 U	4300 U	19000 U	19000 U	22000 U	22000 U	24000 U	12000
4.6-Dinitro-2-Methylphenol	4300 U	35000 U	18000 U	14000 U	4400 U	20000 U	4300 U	19000 U	19000 U	22000 U	22000 U	24000 U	12000
N-Nitrosodiohenvlamine	068		3800 U	2800 U	O 006	4100 U	068	3800	3900	P 009	4500 U	4900 U	300
4-Bromonhanyl Phandattar	#1 CD#	****	- 800	2800 13	77 006	4100 U	J 068	3800 U	n 0068	4600	4800 C	4900 U	2400 1
Haxachlorobanzana	100	7200 U		2800 U		4100 U	⊃ 068	3800 ∪	⊃ 0068	4600 ∪	4500 U	0064	2400
Pentachlorophenol	1	35000 U		14000 U	4400 U	20000 U	4300 U	19000 U	19000 U	22000 U	22000 U	24000 U	12000
Phenanthrana	250		5800	550	630	5700	160 J	3200	2600 J	10000	2300 J	1900	1900
Anthracene	n 068	7 0061	640	2800 년	120 1	F 000] 1008 1008	450 J	n 0068	1500	640	7 0087	210
Di-n-Butyl Phthalate	⊃ 068	7200 U	3800	2800 U	⊃ 0%	4100 U	D 068	3800 U	3900 ∪	4600 U	4500 U	4900 U	2400
Fluoranthene	370 J	21000	8600	929 ا	1300	7500	190 J	2000	4300	13000	3200	2500 J	2400
Pyrene	300	43000	0069	F 009	820 J	2000	140	3700 J	3300	10000	2800 J	1900 ك	1900
Butylbenzyl Phthalate	260	7200	4300	2800 U	150	640 L	D 068	1200 J	7 099	4600 U	4500 U	4900 U	2400
3,3'-Dichlorobenzidine	1800 U	14000 U	7500 U	5600 U	1800 U	8200 U	1800 U	J 00/4	∩ 0077	9100 U	∩ 0006	0086	4800
Benzo(a) Anthracene	068	6500 J	3000	330 J	420 J	2700 J	S90 U	1900	1600 ا	5100	1300	r 086	096 6
Chrysene	190	11000	4000	390	640 J	3700 J	O68	Z600 J	2200 J	6700	2000 J	1400 J	1300
Bis(2-Ethylhexyl)Phthalate	1,700	F 0059	00011	4900	4400	20002	3100	30000	5200	0009	10000	11000	12000
Di-n-Octyl Phthalate	O68	7200 U	3800 ∪	2800 U	O 006	4100 U	068	3800 U	3900 ∪	4600 U	4500 U	4900 U	2400
Benzo(b)Fluoranthene	150 J	15000	2600 J	:	540 J	•	•	2200 J	1500 ا	₹300	1100	790	1300
Benzo(k)Fluoranthene	160 J	12000	2600 J	290 J⁺*	720 J	5400 *	100	2500 J	1300	4500 J	1300 J	850 J	2400
Велго(а)Ругеле	7 091	13000	7 0008		\$80 J	3000	8	7 061	1500	4300	1001	740 3	830
Indeno(1,2,3-cd)Pyrene	O68	8100	2300 J	2800 U	340	2400 J	068	1500 J	1300 J	3800	800	670 J	460
Dibenzo(a,h)Anthracene	O68	7200 U	620 J	2800 U	006	870 J	O68	510 J	3900	1200 J	4500 U	4900 U	2400
Benzo(g,h,i)Perylene	110 J	7200	2000 J	2800 U	340	2000	068	1300 J	1100 J	3600 J	910 J	650 J	610
Total LPAHs	250	9400	7890	550	750	6910	92	3850	2600	13050	2940	2580	2720
Total HPAHs	1430	136800	35620	2550	2800	32570	520	23110	18300	26500	14510	10380	9760
Total Petroleum													
Hydrocarbons	440	750	910	830	1200	4600	440	4400	2200	2700	2300	2000	3400
U=Undetected J=Estimated					Benzo(b)	Fluoranthene Indicates co	** Benzo(b)Fluoranthene + Benzo(k)Fluoranthene	oranthene detected					
LPAH≖Low molecular weight polycyclic aromatic hydrocarbon	ir weight poly.	evelic aromatic	hydrocarbon										

Table 12. Comparisons of Carcinogenic PAH and Total Petroleum Hydrocarbon Concentrations with MTCA Cleanup Levels

		Vactor Sediments	And an analysis of the second	MTCA Clea	MTCA Cleanup Levels*
	Residential	Commercial	Industrial	Sizenes	Indietrial
	(mean)	(mean)	(mean)	soils	soils
Carcinogenic PAHS (mg/Kg) [sum of benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(x)fluoranthene, pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene]	21	8. 9.	12	1.0	20
Total Petroleum Hydrocarbons (mg/Kg)	730	2700	2600	200	200

* = Model Toxics Control Act Cleanup Regulation, Ch 173-340 WAC

Table 13. Results of Pesticide/PCB Analysis of Vactor Sediment (mg/Kg, dry weight basis) - July, 1991

Land-Use:		Re	side	Residential				Commercia	ercial			_	Industrial			
Cration #:	1	6		6		18	4	5	9	7	8	11	12	15	15-C	Jup.
Oate:	7/22	7/23		7/23		7/31	7/24	7/24	7/25	7/25	7/29	7/29	7/30	1/30	1/30	8
Lab Log#:	308130	30813	_	308132	e,	08142	308133	308134	308135	308136	308137	308138	308139	308140	88	141
alpha-BHC	22	2	3	24	>	27 U	22 (24		24 U		22	25		
beta-BHC	22	23	ے ص	24	>	27 U	22 (24 ∪			25		23 U
delta-BHC	55	23	٠ د	24)	27 U	22 (24 ∪	1 23 (25	-	
camma-BHC (Lindane)	- 22	8 2	3	24	Э	27 G	23	888		_0 82 €	24 U	- 83	2000			
Heptachlor	22	U 23	ა ე	24	⊃	27 U	22 (3	U 24 L	J 23 U	24 U	1 23 (:	25	5	
Aldrin	22	U 23	3	24	>	27 U	22 (J 23 U	24 L	1 23 (52		
Heptachlor Epoxide	22	2	23 U	24	>	27 U	22 (24		24 U	1 23 (52		
Endosuttani	2	3 1	3	24	b	27 U	ฉ	3000	333		24 L			*8	3	
Dieldrin	43	∪ 4	5	48	>	54 ∪	4	:			47 L		4		5	
4.4'-DDE	43	4	45 U	48	>	54 ∪	4			J 46 U	47 L		4		5	
Endrin	43	U 4	45 U	48	>	2¥	4		47			45	4	8		
Endosuttan ti	43	7	e S	48	b	2 2	4	988	47	ت دد ت		\$	1	8		
4,4'-DDD	43	⊃ 4	5 د	48	2	⊉ ⊃						45		S .	>	
Endosulfan Sulfate	43	∪ 4	45 U	48	-	54 ∪	44		47	U 46 U		45	4		5	
4.4'-DDT	43	J 4	45 U	 84	>	2 ⊃		51	47	46		45		8		
Methoxychior	220	. 230	0	240	3	270 U		****	240	n 880 n	240 U	88	ង្គ	88	5	
Endrin Ketone	43	U 45	5	48	_	54 ∪	>				47 U	45			5	
alpha-Chlordane	220	U 230	0	48	>	270 U		250			240 U	230				
gamma-Chlordane	220	U 230	0	48	>	270 ∪			240	230		230	220			
Toxaphene	430	U 450	n 0	480	3	10 083		\$10	470		****	937	0 77		<u> </u>	
Aroclor-1016	220	U 230	⊃	240	>	270 U	220	U 250 L	U 240 L	U 230 U	240 U	230	U 220 (U 250		230 ∩
Aroclor-1221	220	U 230	0	240	>	270 U		250		J 230 U		230	220			
Aroclor-1232	220	U 230	0	240	>			250		230		230	- 1			
Arodor-1242	220	U 230	1 0	240	9	270 U		250	240	ລ 88 ລ	240 U	983	8		 3	ာ 8
Aroclor-1248	220	U 230))	1 240	>	270 U	>	U 250 l	J 240 (J 230 U		230	220	U 250		230 ∩
Arocior-1254	430	U 450	9	480	>	540 U	440	U 510	U 470 L	U 460 U					· >	460 ∪
Aroclor-1280	430	U 450	9	480	>	540 U	440	U 510	U 470 (U 460 U	470 U				· ວ	480 C

U=Undetected

- 4) PAH and total petroleum hydrocarbon concentrations are high in vactor sediment. Carcinogenic PAH and TPH concentrations in vactor sediments from residential, commercial, and industrial areas exceed MTCA cleanup levels.
- 5) Aside from PAHs in vactor sediments, concentrations of most detected analytes were higher in wastes from industrial-use areas than they were in wastes from residential and commercial areas.
- 6) Pesticides and PCBs were not detected in vactor decant water or sediment, although detection limits were higher than called for in the sampling and analysis plan.

RECOMMENDATIONS

- 1) Collect and analyze filtered vactor decant water samples to determine concentrations of dissolved metals. Also analyze total metals in unfiltered samples to determine the relationship between particulate and dissolved components.
- 2) Collect and analyze additional vactor decant water samples for toluene, xylenes, ethylbenzene, and TPH.
- 3) Collect and analyze additional vactor sediment samples for priority pollutant metals. If warranted, use Toxicity Characteristic Leaching Procedures (TCLP) for metals to determine if levels meet criteria for dangerous waste designation under Ch. 173-303 WAC.
- 4) Collect and analyze additional vactor sediment samples for petroleum-derived contaminants such as benzene, ethylbenzene, toluene, xylenes, PAHs, and TPH.
- 5) Meet with staff of Ecology's Water Quality, Hazardous Waste, and Toxics Cleanup Programs for input on regulatory implications of the results reported here.

REFERENCES

- APHA. 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed. Washington, D.C., American Public Health Association.
- ----. 1989. <u>Standard Methods for the Examination of Water and Wastewater, 17th ed.</u> Washington, D.C., American Public Health Association.
- EPA. 1984. Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH.
- ----. 1986a. <u>Test Methods for Evaluating Solid Waste</u>. SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C.
- ----. 1986c. Quality Criteria for Water 1986. EPA 440/5-86-001. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C.
- ----. 1987. <u>U.S. EPA Contract Laboratory Program Statement of Work for Inorganic Analysis, Multi-Media, Multi-Concentration</u>. U.S. Environmental Protection Agency, Washington, D.C.
- Herrera Environmental Consultants, Inc. 1991. <u>Vactor Truck Operations and Disposal Practices</u>. Prep. *for Department of Ecology Stormwater Unit*, Olympia, WA.
- PTI Environmental Services. 1991a. <u>Characterization of Catch Basin Wastes: Sampling and Analysis Plan</u>. Draft Report Prep. *for* Environmental Protection Agency Region 10, Office of Coastal Waters, Seattle, WA.
- ----. 1991b. <u>Characterization of Catch Basin Wastes: Draft Technical Memorandum.</u> Prep. for Environmental Protection Agency Region 10, Office of Coastal Waters, Seattle, WA.
- ----. 1991c. <u>Pollutants of Concern in Puget Sound</u>. Prep. *for* Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA.
- Resource Planning Associates. 1990. <u>Plan for the Disposal of Residuals from the Cleaning of Stormwater Detention and Conveyance Systems</u>. Prep. for King County Department of Public Works, Division of Surface Water Management and Division of Roads.
- Serdar, D. 1991. <u>Project Proposal Characterization of Vactor Truck Wastes</u>. Memorandum to Bill Yake, Washington State Department of Ecology, Olympia, WA.
- Tetra Tech, Inc. 1988. <u>Elliott Bay Action Program: Storm Drain Monitoring Approach</u>. Prep. *for* Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA.

APPENDIX A Maps of Sampling Stations

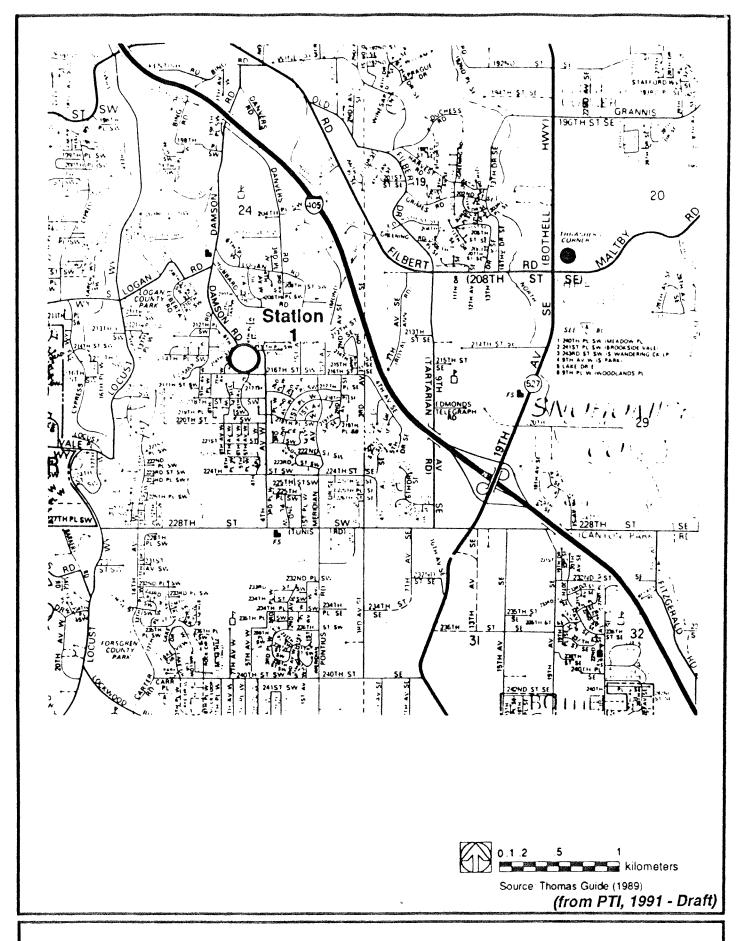


Figure A1. Location of Station 1 (Snohomish County)

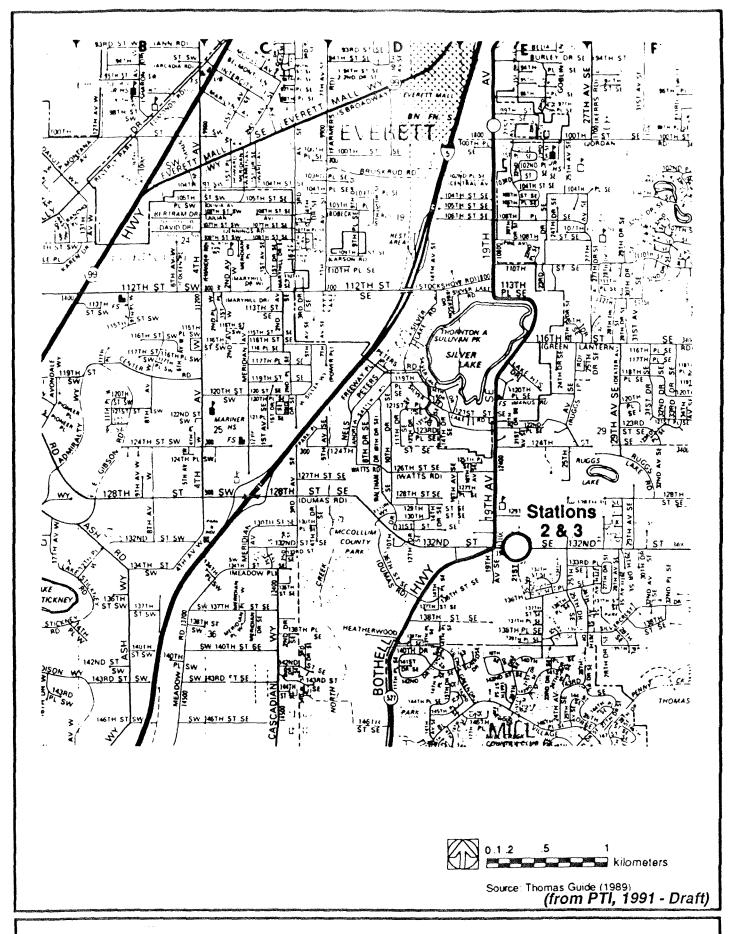


Figure A2. Location of Stations 2 and 3 (Snohomish County)

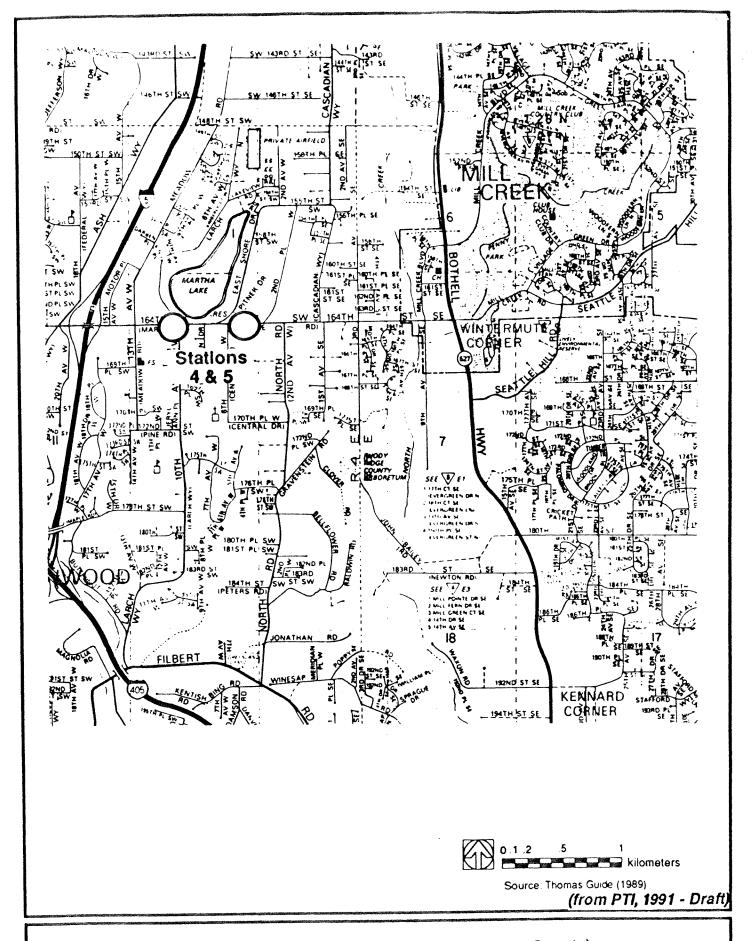


Figure A3. Location of Stations 4 and 5 (Snohomish County)

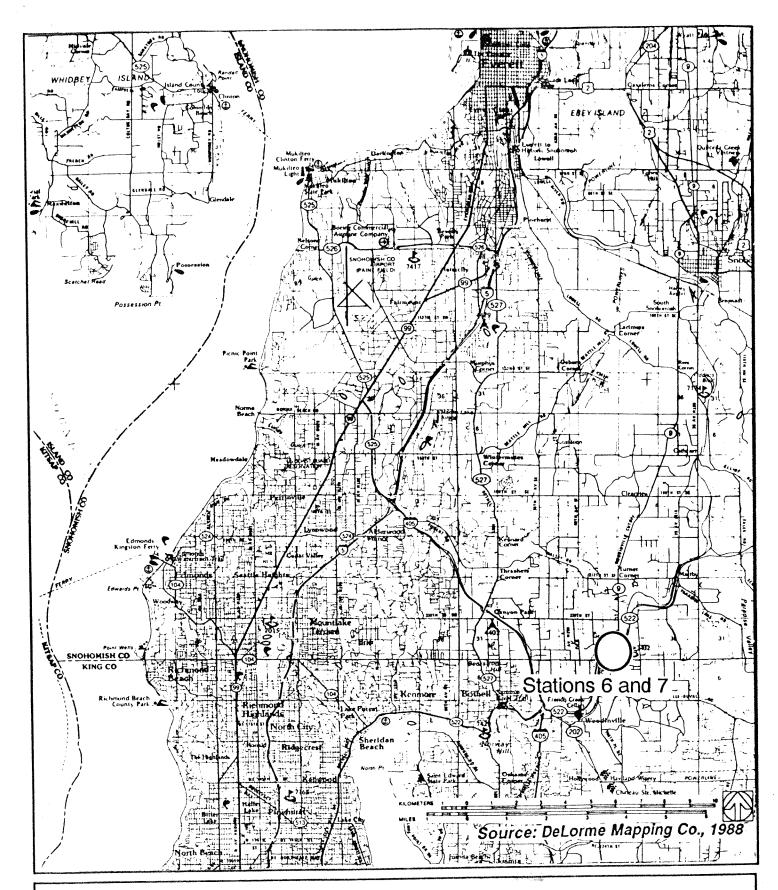


Figure A4. Location of Stations 6 and 7 (Snohomish County)

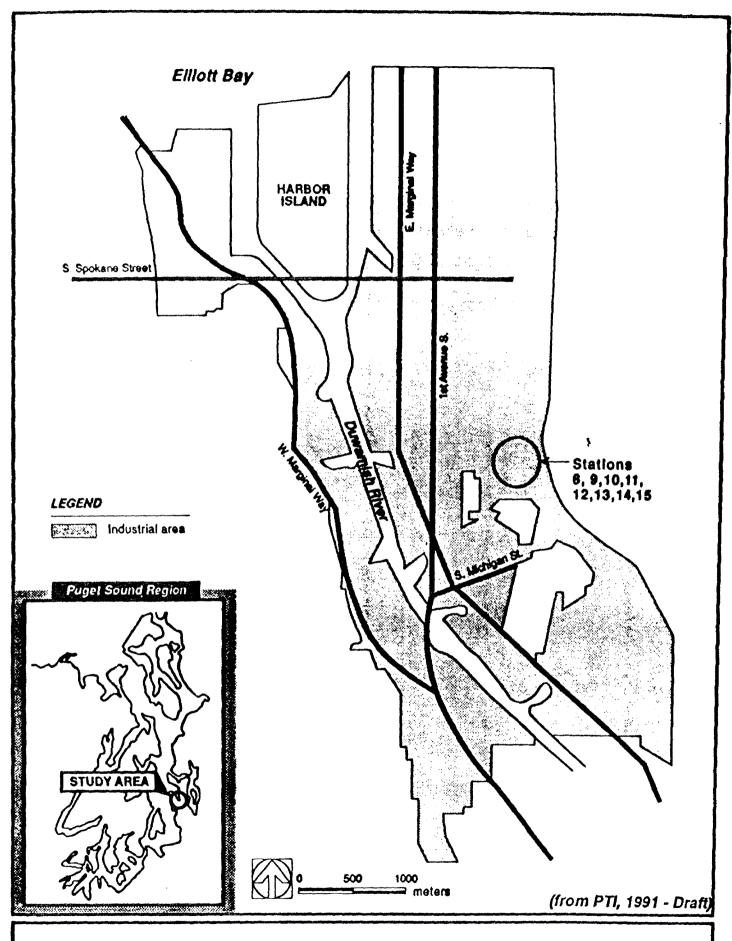


Figure A5. Location of Stations 8 - 15 (Seattle)

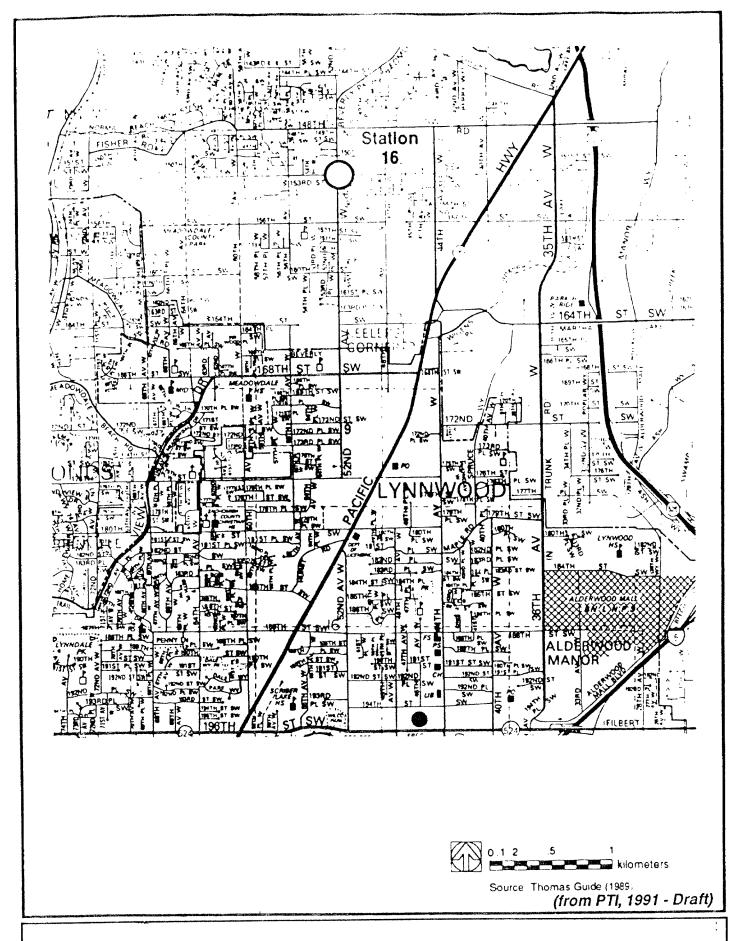


Figure A6. Location of Station 16 (Snohomish County)

APPENDIX B Quality Assurance Review

DATA QUALITY ASSURANCE REVIEW

This section summarizes the results of a quality assurance review of chemical analyses for conventional analytes, metals, VOCs, semivolatile ABN compounds, and PCBs in water.

QUALITY CONTROL METHODS

The quality assurance review for all analyses included examination of the following laboratory data:

- Sample extraction, digestion, and preparation logs
- All instrument printouts
- Instrument tuning, calibration, and continuing calibration verification performance and results
- Method blank summaries and results
- Surrogate compound and matrix spike results
- Sample duplicate (conventional chemistry) and matrix spike duplicate (organic compounds) results
- Internal standards performance and results

- All sample results and EPA CLP equivalent reporting forms (i.e., Forms I and I-TIC), including chromatograms and mass spectral identifications for all target analytes and tentatively identified compounds
- Sample holding times and chain-of-custody records
- Manual data transcriptions and computer algorithms.

Data qualifiers were assigned, as necessary, during the quality assurance review. Following the validation procedures, data quality was assessed with respect to completeness, analytical methods, accuracy, and precision.

DATA QUALITY EVALUATION

The results of data validation are presented in the following four sections. The completeness of the data package, the qualifiers assigned to individual measurements, and the laboratory's overall performance are addressed in each section.

The following qualifiers were assigned to the data during quality assurance review. A J qualifier was assigned during the quality assurance review to indicate that the reported data are considered estimates and that a greater degree of uncertainty is associated with these data than with nonqualified data. The J qualifier was assigned to results that were reported at a concentration less than the contract-required quantitation limit (CRQL) or because the reported concentration exceeded the concentration of the highest standard used to establish the initial calibration. In addition, the J qualifier may also be associated with the U qualifier to indicate that the target analytes were not detected at a concentration greater than the CRQL, but are considered estimates because other quality

assurance criteria were not met. All data assigned J or UJ qualifiers are acceptable. A B qualifier was assigned during the quality assurance review to indicate that the reported data are considered estimates because method blank contamination was identified. In some instances, a J qualifier is also associated with the B qualifier to indicate that the reported value is below the CRQL. A U qualifier was assigned by the laboratory to all results reported as not detected and reported at the CRQL. Because the detection limits for these results are acceptable, a U qualifier does not reflect negatively on laboratory performance.

Analysis of Metal and Conventional Analytes

The results reported for conventional analytes associated with the SDG are acceptable as reported by the laboratory with the following qualifications:

- Eight analytical results (2 percent of all results) were qualified as estimates (J). Four results (two pH and two biological oxygen demand) were qualified as estimates because of exceeded holding times. One result (fecal coliform bacteria) was qualified as an estimate because of improper sample handling. Three results for lead were qualified as estimates because of poor matrix spike recovery as well as poor duplicate precision.
- A *U* qualifier was assigned by the laboratory to 24 results (7 percent of all results) that were reported as not detected and reported at the CRQL. A *UJ* qualifier was assigned to one result.

In addition to these qualifications, six results had been calculated or transcribed incorrectly. These calculation or transcription errors were corrected.

All other specifications stipulated by PTI (1991 a,c), U.S. EPA (1984), and APHA (1989) were met by the laboratory and further qualification of the data was not required in accordance with procedures established by U.S. EPA (1988b).

Analysis of Volatile Organic Compounds

All results reported for VOCs for the 16 water samples in the SDG are acceptable as reported by the laboratory with the following qualifications:

- A J qualifier was assigned to 17 results (3 percent of all results) that had values lower than the CRQL or because the reported concentration exceeded the concentration of the highest standard used to establish the initial calibration.
- A B qualifier was assigned to 9 results (2 percent of all results) for dichloromethane to indicate blank contamination. One result was qualified JB to indicate that the reported value is below the CRQL.
- A U qualifier was assigned by the laboratory to 474 results (87 percent of all results) that were reported as not detected and reported at the CRQL.

The qualifiers assigned to selected results are not unusual for the analysis of environmental samples, with the exception of data qualified because the upper linear range of the instrument was exceeded. The laboratory should have diluted these samples and reanalyzed them. However, because of holding time restrictions this procedure could not be performed.

All other specifications stipulated by U.S. EPA (1986b, 1988a) and PTI (1991a,b) were met by the laboratory and further qualification of the data was not required in accordance with procedures established by U.S. EPA (1988a).

The target analytes detected in the samples associated with the SDG include acetone, ethylbenzene, toluene, total xylenes, dichloromethane, 4-methyl-2-pentanone, 2-butanone, and 0-5 tentatively identified compounds. In addition, the analyses performed on the two trip blanks detected acetone and dichloromethane; acetone was used in field decontamination procedures and both of these compounds are also common laboratory contaminants.

Analysis of Semivolatile Acid/Base/Neutral Compounds

All results reported for ABN compounds for the 16 water samples in the SDG are acceptable as qualified during the quality assurance review. Qualification of the data was required for the following reasons:

- A J qualifier was assigned to 18 results (2 percent of all results) for two reasons. First, the J qualifier was assigned when the criteria for continuing calibration analyses (U.S. EPA 1986b, 1988a) were not met. The target compounds that were affected include benzoic acid, 4-nitrophenol, benzo(b)fluoranthene, indeno(1,2,3-c,d)pyrene, and benzo(g,h,i)perylene. Second, the J qualifier was assigned because the results were reported at concentrations less than the CRQL.
- A B qualifier was assigned during the quality assurance review to one result for bis(2-ethylhexyl)phthalate to indicate that the reported data are considered estimates because method blank contamination was identified. Four results also have a J qualifier associated with the B qualifier to indicate that the reported value is below the CRQL.
- A U qualifier was assigned by the laboratory to 1,000 results (92 percent of all results) reported as not detected and reported at

the CRQL. A UJ qualifier was assigned to 59 results (5 percent of all results).

The qualifiers assigned are not unusual for the analysis of environmental samples, with the exception of the data that were qualified because the criteria for continuing calibration analyses were not met. The laboratory should have reanalyzed all continuing calibration standards that did not meet U.S. EPA (1986b, 1988a) criteria for acceptable performance to identify whether the outliers were isolated occurrences.

All other specifications stipulated by U.S. EPA (1986b, 1988a) and PTI (1991a,b) were met by the laboratory and further qualification of the data was not required in accordance with procedures established by U.S. EPA (1988a).

The target analytes detected in the samples associated with the SDG include phenol, benzoic acid, bis(2-ethylhexyl)phthalate, 4-chloro-3-methylphenol, naphthalene, 4-methylphenol, 2-methylnaphthalene, fluorene, phenanthrene, di-n-butyl phthalate, butylbenzyl phthalate, and several tentatively identified compounds (e.g., organic acids, hydrocarbons, and unknown compounds).

Analysis of Polychlorinated Biphenyls

All results reported for PCBs for the 10 samples in the SDG are acceptable as reported by the laboratory. Qualification of the data was not required during the quality assurance review and all results were assigned a U qualifier by the laboratory to indicate that PCBs were not detected at a concentration greater than the CRQL.

The criteria specified by U.S. EPA (1986b, 1988a) and PTI (1991a,b) for acceptable laboratory performance were met by the laboratory, with the exception

of the surrogate recovery data for dibromooctafluorobiphenyl (DBOFB). The spiking concentration for DBOFB used by the laboratory exceeded the instrument's upper linear range; therefore, the concentrations could not be quantified. However, because the laboratory used dibutylchlorendate as an additional surrogate compound and acceptable recoveries were reported, qualification of the sample data was not required.

All other specifications stipulated by U.S. EPA (1986b, 1988a) and PTI (1991a,b) were met by the laboratory and further qualification of the data was not required in accordance with procedures established by U.S. EPA (1988a).

WASHINGTON STATE DEPARTMENT OF ECOLOGY ENVIRONMENTAL INVESTIGATIONS AND LABORATORY SERVICES MANCHESTER LABORATORY

September 19, 1991

TO:

Dave Serdar

FROM:

Randy Knox RS/L

SUBJECT:

QA Summary on Sediment Samples.

SAMPLE RECEIPT:

The samples from the Catch Basin Disposal Study project were received by the Manchester Laboratory in three batches on 7/25/91, 7/31/91, and 8/01/91 in good condition.

HOLDING TIMES:

All analyses were performed within the specified holding times for metals analysis (28 days for mercury, 180 days for all other metals).

INSTRUMENT CALIBRATION:

Instrument calibration was performed before each analytical run and checked by initial calibration verification standards and blanks. Continuing calibration standards and blanks were analyzed at a frequency of 10% during the run and again at the end of the analytical run. All initial and continuing calibration verification standards were within the control limits of +/-10%. AA calibration gave correlation coefficients greater than the criteria of 0.995. A correlation coefficient of 0.995 or higher means that the calibration is acceptable. The thallium data for samples 308130 - 308134 lacks an ending blank to demonstrate the absence of carryover. Since no thallium was detected in the samples, carryover is not a problem and the data does not need qualification. The ending interference check standard for lead and nickel for samples 308135 - 308142 is lower than the - 80% allowed. Values are 75% and 78% respectively. The initial check is within the acceptable window.

PROCEDURAL BLANKS:

The procedural blanks associated with these samples showed no detectable levels of analytes except copper and lead. Levels of these elements in the samples is > 10X that found in the blanks so qualification of the data is not necessary.

SPIKED SAMPLE ANALYSIS:

Spiked sample and duplicate spiked sample analysis were performed on sample number(s) 308130, 308133, 308135 for most elements and 308130, 308135, and 308142 for mercury. All spike recoveries were within the acceptable limits of +/- 25% for sediment sample analysis except those for antimony, silver, and mercury and chromium on one spiked sample but not the other. Antimony is difficult to recover from many sediment samples without a specific prep. Antimony data is flagged with an N to indicate the low recovery obtained. Silver recovery ranged from 57% to 87%. Low silver recovery is common from sediment matrices. Silver data is flagged with an N to indicate it is an estimate because of the low spike recoveries. Mercury data associated with samples 308135 - 308138 was prepped with a sample which had a spike recovery of 153%. The duplicate spike recovery was 92%, well within established limits. This data was flagged with an N to indicate the recovery fluctuation and susequent uncertainty in the sample level. Chromium data on samples 308135 - 308142 is flagged with an N to indicate the high recovery shown, 156% and 122%.

PRECISION DATA:

The duplicate results of the spiked and duplicate spiked sample were used to calculate precision related to the analysis of these samples. The % RPD for all parameters was well within the +/-20% window for duplicate analysis. Mercury data for the set of spiked samples associated with samples 308135 - 308138 is the exception. This data as earlier noted with the recovery data is flagged with an N to indicate it is estimated.

ICP SERIAL DILUTION ANALYSIS:

The Relative Percent Difference (RPD) between sample results and the results for a serial dilution of the same sample were less than 10% for all elements except the zinc associated with samples 308135-308142. This zinc data is flagged with an J to indicate it is estimated. Failure of serial dilution to pass may indicate the presence of interference.

SUMMARY:

The data generated by the analysis of the above referenced samples can be used with qualification of silver and antimony data as an estimated owing to low recoveries. Some mercury and chromium data is flagged as estimated due to high and erratic recovery. Some zinc data is flagged because in an associated sample, zinc data did not pass the serial dilution test.

If you have any questions about the results or the methods used to obtain these results please call me at SCAN 744-4737.

cc Bill Kammin

State of Washington Department of Ecology Manchester Environmental Laboratory 7411 Beach Dr. East Port Orchard WA. 98366

Data Review December 6, 1991

Project: Catch Basin Disposal Study

Samples: 308130 308131 308132 308133 308134 308135 308136

308137 308138 308139 308140 308141 308142

Laboratory: Weyerhaeuser Analytical and Testing Services 6347

By: Stuart Magoon, St.,

Case Summary

These analyses were reviewed for qualitative and quantitative accuracy, validity, and usefulness. Specific methods used and problems incurred during the analysis are detailed in the Case Narrative. Specific problems with the QC will be noted and referenced to the Case Narrative.

There is no need to assimilate the "dilution factor" or "sample wt/vol" into the final values reported; these calculations have already been figured into the reported values.

Where the term "EPA SAMPLE NO." appears take this to mean DOE Laboratory number. These forms are from the SOW for the US EPA CLP and any reference to the EPA is unintentional.

These results have been reported on a dry weight basis.

DATA QUALIFIER DEFINITIONS

- U The analyte was not detected at or above the associated value.
- UJ The analyte was not detected at or above the associated estimated value.
- J The analyte was positively identified. the associated numerical value is an estimate.
- NR Not Reported. This analyte was added as part of the Matrix Spike solution and is not reported here.
- E The concentration of this analyte exceeded the calibration range, and a dilution should be performed.
- D The result was derived from an analysis of a sample that required a secondary dilution.
- NJ There is evidence that the analyte is present. The associated numerical value is an estimate.
- REJ- The data are not unusable for all purposes.
- X This is an artifact. This qualifier does not bear any significance as to the usefulness of the result(s).

Volatiles

Sample	Date Collect	Date Extd	Date Aniz	#Days collect to ext	#Days Collect to anal
308130 308131 308132 308132DL 308133 308134 308134DL 308135 308136 308136RE 308136RE 308137 308137DL 308138 308138DL 308139 308139DL 308140 308140DL 308141 308141DL	7/22 7/23 7/23 7/23 7/24 7/24 7/24 7/25 7/25 7/25 7/29 7/29 7/29 7/29 7/30 7/30 7/30 7/30 7/30 7/30	NA N	8/7 8/7 8/7 8/8 8/8 8/7 8/23 8/7 8/8 8/7 8/8 8/7 8/8 8/7 8/8	NA NA A A A A A A A A A A A A A A A A A	16 of 14 15 of 14 15 of 14 16 of 14 15 of 14 14 of 14 30 of 14 13 of 14 14 of 14 9 of 14 9 of 14 9 of 14 8 of 14 9 of 14 8 of 14 9 of 14 20 of 14
308142	7/31	NA	8/7	NA	7 of 14

These samples were analyzed within the SW 846 recommended holding time, with five exceptions.

The "RE" suffix is an abbreviation for re-analysis. The "DL" suffix is an abbreviation for dilution.

Method Blanks:

Acetone was detected in all but one of the five method blanks. Several siloxane compounds were detected in two of the blanks. These siloxane compounds are probably the result of column bleed and not native to any of the blanks or samples.

Surrogates:

Surrogate recoveries for these samples, the matrix spikes, and the associated method blanks are reasonable, acceptable and within QC limits, with several minor exceptions. These surrogate recovery outliers are a reflection of the low internal standard recoveries for Chlorobenzene-d5. All results associated with internal standards that were below the QC limit have been qualified with a "UJ" or "J".

Matrix spikes (MS/MSD):

Matrix spike recoveries and precision data are acceptable and within QC limits, with two exceptions for the spiked sample 308131.

Toluene was spiked at 69 ppb The toluene recovery in the MSD was recovered below the QC limit, but within the QC limit for the MS. This resulted in an RPD value of 60, which was also outside to the QC limit. Analysis of the sample showed Toluene was present at 160 ppb, a little more than two times the amount spiked. The low recovery for the MSD of sample 308131 is appears to be due to poor sample homogeneity, however, all three internal standards for the MS were below the QC acceptance limits. The MS analysis should have been re-analyzed. All non-detects for 308131MS have been qualified with a "UJ", positives have been qualified with a "J".

Use the MS/MSD recovery and precision data for sample 308137.

Sample Data:

This data is acceptable for use. The results for analytes that have been qualified with an "E" should not be used for the final report, instead use results from the secondary dilution ("D").

Although the "J" qualified values are considered estimates they should be accurate to within the order of magnitude reported.

Semivolatiles (BNA)

Sample	Date Collect	Date Extd	Date Anlz	#Days collect to ext	#Days extract to anal
308130 308131 308132 308133 308134 308135 308136 308137	7/22 7/23 7/23 7/24 7/24 7/25 7/25 7/29	8/09 8/09 8/09 8/09 8/09 8/09 8/09	8/22 8/22 8/22 8/22 8/22 8/22 8/22 8/22	18 of 14 17 of 14 17 of 14 16 of 14 16 of 14 15 of 14 15 of 14	13 of 40 13 of 40 13 of 40 13 of 40 13 of 40 13 of 40 13 of 40
308138 308139 308140 308141 308142	7/29 7/30 7/30 7/30 7/31	8/09 8/09 8/09 8/09 8/09	8/22 8/22 8/22 8/22 8/22	11 of 14 10 of 14 10 of 14 10 of 14 09 of 14	13 of 40 13 of 40 13 of 40 13 of 40 13 of 40

All these samples were extracted within a reasonable period of time. Seven of the thirteen samples were extracted one to four days beyond the SW 846 recommended holding time of fourteen days. These outliers are minor and do not necessitate the need for qualification of the data.

Method Blanks:

No target analytes or non-target analytes (TIC's) were detected in the method blank.

Surrogates:

All surrogate recoveries for these samples, the matrix spikes, and the associated method blank are reasonable, acceptable and within QC limits.

Matrix Spike and Matrix Spike Duplicate (MS/MSD):

MS/MSD recoveries and precision data are acceptable and within QC limits.

Sample Data:

This data is acceptable for use. Note that data qualifiers may modify the usefulness of the individual values.

The results that have been qualified with a "J" should be accurate within the order of magnitude reported.

Recommendation:

Analyze samples for TPH 418.1, due to large number of TIC's as hydrocarbons.

Organochlorine Pesticides and PCB's

Sample	Date Collect	Date Extd	Date Anlz	#Days collect to ext	#Days extract to anal
308130	7/22	8/09	8/25	18 of 14	17 of 40
308131	7/23	8/09	8/26	17 of 14	16 of 40
308132	7/23	8/09	8/25	17 of 14	17 of 40
308133	7/24	8/09	8/25	16 of 14	16 of 40
308134	7/24	8/09	8/26	16 of 14	17 of 40
308135	7/25	8/09	8/26	15 of 14	17 of 40
308136	7/25	8/09	8/26	15 of 14	17 of 40
308137	7/29	8/09	8/26	11 of 14	17 of 40
308138	7/29	8/09	8/26	11 of 14	17 of 40
308139	7/30	8/09	8/26	10 of 14	17 of 40
308140	7/30	8/09	8/26	10 of 14	17 of 40
308141	7/30	8/09	8/26	10 of 14	17 of 40
308142	7/31	8/09	8/25	09 of 14	16 of 40

All these samples were extracted within a reasonable period of time. Seven of the thirteen samples were extracted one to four days beyond the SW 846 recommended holding time of fourteen days. These outliers are minor and do not necessitate the need for qualification of the data.

Method Blanks:

No target compounds were detected in the method blank.

Surrogates:

All surrogate recoveries for these samples, the matrix spikes, and the associated method blank are reasonable, acceptable and within QC limits, with four exceptions. See the Case Narrative.

Matrix Spike and Matrix Spike Duplicate (MS/MSD):

All MS/MSD recoveries are twice the levels expected, and outside of the quality control limits. See Case Narrative. Precision data (RPD) is acceptable and within limits. Since the recovery was high and no analytes were detected in any of these samples; no action is required.

Sample Data:

This data is acceptable for use without the need for additional data qualifiers. No organochlorine pesticides or polychloronated biphenyls were detected in any of the samples.

3236 Weyerhaeuser Was South Federal Way, Washington 98003 Analytical Chemistry Laboratories Facoma Washington 98477 Tei 206] 924 6872 Fax 206] 924 6664

CASE NARRATIVE

WEYERHAEUSER (WEYER) ANALYTICAL AND TESTING SERVICES

Case Number: 06347
SDG Number: 308130
Contract Number: CBDS Project

Samples from this case (06347) were received on 8/1/91. This case was comprised of soils for VOAs, BNAs, and Pesticides. The requested analyses were as follows:

SAMPLE ID	MATRIX	ANALYSIS REQUESTED
308130	Soil	BNA; VOA; Pest
308131	Soil	BNA; VOA; Pest
308132	Soil	BNA; VOA; Pest
308132DL	Soil	VOA
308133	Soil	BNA; VOA; Pest
308134	Soil	BNA; VOA; Pest
308134DL	Soil	VOA
308135	Soil	BNA; VOA; Pest
308136	Soil	BNA; VOA; Pest
308136RE	Soil	VOA
308137	Soil	BNA; VOA; Pest
308137DL	Soil	VOA
308138	Soil	BNA; VOA; Pest
308138DL	Soil	VOA
308139	Soil	BNA; VOA; Pest
308139DL	Soil	VOA
308140	Soil	BNA; VOA; Pest
308140DL	Soil	VOA
308141	Soil	BNA; VOA; Pest
308141DL	Soil	VOA
308142	Soil	BNA; VOA; Pest
308131 M S	Soil	VOA
308131 M SD	Soil	VOA
308137 MS	Soil	VOA
308137 MS D	Soil	VOA
308142MS	Soil	BNA; Pest
308142 M SD	Soil	BNA; Pest

Several anomalies existed with this sample set that are listed below. The anomalies are broken up into three categories for ease of explanation.

1. VOA

- a) All samples and blanks contain a peak at approximately scan #50 that is >10% of the nearest internal standard. This peak is carbon dioxide and is not searched in any of the samples. A spectra of this peak is on file at the laboratory for review.
- b) The quantitation mass for 2-Butanone was changed from m/z72 to m/z 73 due to low sensitivity with m/z 72.
- Surrogate and/or internal standards were outside QC limits on samples 308134%,308136, 308138, 308139, 308140, 3081370c, 308137MS, and 308137MSD. All of these samples were rerun either not diluted or as dilutions. In all cases both runs are submitted. Sample 308131MS also had problems but as this was an MS and no criteria for reruns is listed in CLP for MS samples, the sample was not rerun. Sample 308137 was not rerun either based on the fact that the same problem occurred on the MS and MSD. Several of the reruns were performed outside holding times.

2. PESTICIDES

a) Four samples, 308131, 308136, 308142MS, and 308142MSD have high surrogate recoveries. It appears that these samples were double spiked or split 1/10 instead of 1/20. The calculations were performed using the information from the bench sheets. The spike recoveries are also high by a factor of two in the MS and MSD indicating that the samples were split incorrectly and not spiked incorrectly. As these are advisory limits only and no compounds were found in any of the samples, no action was taken. Another indication that this is what happened is the detection of a peak in the MS and MSD at 7.66 minutes being much larger than in the original sample.

3. BNA

a) Some of the PAHs in the MS and MSD are higher than the original sample. The surrogate recoveries are also higher in the MS and MSD. In all cases, the QC limits for the surrogates are within limits. These are low level hits and required no further action.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Dennis M. Catalano Laboratory Manager 7/10/41

Please feel free to contact me with any questions concerning this data report. I can be reached at (206) 924-6242.

Sincerely,

Dennis M. Catalano, Manager

Organic Laboratory

Weyerhaeuser Analytical & Testing Services

APPENDIX C

Tentatively Identified Organic Compounds in Decant Water

ATI I.D. # 9107-328-4

VOLATILE ORGANIC ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

: PTI ENVIRONMENTAL SERVICES DATE SAMPLED : 07/29/91 CLIENT DATE RECEIVED : 07/30/91 PROJECT # : C744-35 PROJECT NAME : CATCH BASINS DATE EXTRACTED : N/A CLIENT I.D. : C72912 DATE ANALYZED : 08/14/91 SAMPLE MATRIX : WATER : ug/L UNITS DILUTION FACTOR: 1 EPA METHOD : 8240

COMPOUND	FLAG	SCAN	ESTIMATED CONCENTRATION
BENZENE, 1-ETHYL-2-METHYL- BENZENE, 1-ETHYL-3-METHYL- BENZENE, 1-ETHYL-4-METHYL- BENZENE, 1-METHYL-3-PROPYL- CYCLOHEXANEMETHANOL, .ALPHA., .ALPHA., 4-TRIMETHYL		1012 1060 1109 1129	9.0 AJJ 15 12 8.0 13

ATI I.D. # 9107-328-7

VOLATILE ORGANIC ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT : PTI ENVIRONMENTAL SERVICES DATE SAMPLED : 07/29/91
PROJECT # : C744-35 DATE RECEIVED : 07/30/91
PROJECT NAME : CATCH BASINS DATE EXTRACTED : N/A

CLIENT I.D. : C72923

DATE ANALYZED : 08/14/91

SAMPLE MATRIX: WATER

EPA METHOD: 8240

UNITS: ug/L

DILUTION FACTOR: 1

COMPOUND	FLAG	SCAN	ESTIMATED CONCENTRATION
BENZENE, 1,3,5-TRIMETHYL- BENZENE, 1-ETHYL-4-METHYL- UNDECANE CYCLOHEXANEMETHANOL, .ALPHA., .ALPHA., 4-TRIMETHYL BICYCLO[2.2.1]HEPTAN-2-ONE, 1,7,7- TRIMETHYL		1060 1109 1125 1227	7.0 No 6.0 8.0 14

ATI I.D. # 9107-328-10

VOLATILE ORGANIC ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT : PTI ENVIRONMENTAL SERVICES DATE SAMPLED : 07/29/91
PROJECT # : C744-35 DATE RECEIVED : 07/30/91
PROJECT NAME : CATCH BASINS DATE EXTRACTED : N/A
CLIENT I.D. : C72934 DATE ANALYZED : 08/14/91
SAMPLE MATRIX : WATER UNITS : ug/L

EPA METHOD : 8240 DILUTION FACTOR : 1

COMPOUND	FLAG	SCAN	ESTIMATED CONCENTRATION
BENZENE, (1-METHYLETHYL)- CYCLOHEXANEMETHANOL, .ALPHA., .ALPHA., 4-TRIMETHYL CAMPHOR NAPHTHALENE, 1,2,3,4-TETRAHYDRO		1059 1227 1255 1268	15 8.0 7.0

ATI I.D. # 9107-338-1

VOLATILE ORGANIC ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT : PTI ENVIRONMENTAL SERVICES DATE SAMPLED : 07/30/91
PROJECT # : C744-35 DATE RECEIVED : 07/31/91
PROJECT NAME : CATCH BASINS DATE EXTRACTED : N/A
CLIENT I.D. : C73001 DATE ANALYZED : 08/13/91
SAMPLE MATRIX : WATER UNITS : ug/L'
EPA METHOD : 8240 DILUTION FACTOR : 1

COMPOUND	FLAG	SCAN	ESTIMATED CONCENTRATION
UNDECANE BENZENE, 1-METHYL-2-(1-METHYLETHYL UNKNOWN DODECANE TRIDECANE		1124 1136 1192 1220 1295	15 NJ 9.0 9.0 9.0

And the Technologies, we

ATI I.D. # 9107-338-4

VOLATILE ORGANIC ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT : PTI ENVIRONMENTAL SERVICES DATE SAMPLED : 07/30/91
PROJECT # : C744-35 DATE RECEIVED : 07/31/91
PROJECT NAME : CATCH BASINS DATE EXTRACTED : N/A
CLIENT I.D. : C73012 DATE ANALYZED : 08/13/91
SAMPLE MATRIX : WATER UNITS : ug/L
EPA METHOD : 8240

COMPOUND	FLAG	SCAN	ESTIMATED CONCENTRATION
BENZENE, 1,2,3-TRIMETHYL- BENZENE, 1-ETHYL-3-METHYL- CYCLOHEXENE, 4-METHYL-1-(1-METHYL BENZENE, 1,2,3-TRIMETHYL- CYCLOHEXANEMETHANOL, .ALPHA., .ALPHA., 4-TRIMETHYL		1017 1058 1083 1107	7.0 6.0 6.0 14

ATI I.D. # 9107-338-7

VOLATILE ORGANIC ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT : PTI ENVIRONMENTAL SERVICES
PROJECT # : C744-35

DATE SAMPLED : 07/30/91 DATE RECEIVED : 07/31/91

PROJECT NAME : CATCH BASINS

DATE EXTRACTED : N/A

CLIENT I.D. : C73023

: 08/14/91 DATE ANALYZED

SAMPLE MATRIX : WATER

UNITS : ug/L

EPA METHOD : 8240

DILUTION FACTOR: 1

ESTIMATED CONCENTRATION FLAG SCAN

BENZENE, 1-ETHYL-2-METHYL-

1580

7.0 NJ

Technologies,

EPA METHOD : 8240

ATI I.D. # 9107-338-10

VOLATILE ORGANIC ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

DATE SAMPLED : 07/30/91 DATE RECEIVED : 07/31/91 : PTI ENVIRONMENTAL SERVICES CLIENT PROJECT # : C744-35 DATE EXTRACTED : N/A PROJECT NAME : CATCH BASINS : 08/14/91 DATE ANALYZED CLIENT I.D. : C73034 UNITS : ug/L SAMPLE MATRIX : WATER DILUTION FACTOR: 1

FLAG SCAN ESTIMATED CONCENTRATION

COMPOUND 7.0 BENZENE, 1-ETHYL-2-METHYL-1512 9.0 / 1580 BENZENE, 1,2,3-TRIMETHYL-

ATI I.D. # 9108-015-1

VOLATILE ORGANIC ANALYSIS TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT : PTI ENVIRONMENTAL SERVICES DATE SAMPLED : 07/31/91
PROJECT # : C744-35 DATE RECEIVED : 08/01/91
PROJECT NAME : CATCH BASINS DATE EXTRACTED : N/A
CLIENT I.D. : C73101 DATE ANALYZED : 08/14/91

SAMPLE MATRIX: WATER UNITS: ug/L

EPA METHOD : 8240 DILUTION FACTOR : 1

COMPOUND	FLAG	SCAN	ESTIMATED CONCENTRATION
BENZENE, 1-ETHYL-2-METHYL- BENZENE, ETHYL, METHYL- BENZENE, 1,2,4-TRIMETHYL- BENZENE, 1-ETHYL-4-METHYL- BENZENE, 1,2-DIETHYL-		1012 1045 1060 1109 1129	120 NJ 26 100 11 14

ADDITIONAL COMPOUNDS (SEMI-QUANTITATED)

TEST : SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D. : 10881801

COMPOUNDS	RESULTS (ug/L)
METHYLBUTANOIC ACID ORGANIC ACID HEXANOIC ACID HEXANOIC ACID CAMPHOR HEXADECENOIC ACID	100 AU 100 20 30 20 30

TEST : SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D. : 10881809

COMPOUNDS	RESULTS
PENTANOIC ACID CAMPHOR OXYGENATED HYDROCARBON C10 OCTENOIC ACIDS	100 AU 100 1000 900

TEST: SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D.: 10881808

COMPOUNDS

OXYGENATED HYDROCARBON C8

OCTENOIC ACIDS

RESULTS

100 N

100 L

TEST: SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D. : 10881810

COMPOUNDS RESULTS
OXYGENATED HYDROCARBON C7

TEST : SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D. : 10881811

COMPOUNDS		RESULTS (ug/L)	
METHYL BUTANOIC ACID BUTOXY ETHANOL OXYGENATED HYDROCARBON OXYGENATED HYDROCARBON METHYL INDOLE OXYGENATED HYDROCARBON	C7	100 JUT 200 200 20 100 20 400	

TEST : SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D. : 10881807

COMPOUNDS	RESULTS (ug/L)
OXYGENATED HYDROCARBON C10 ETHYL METHYLHEPTANE PROPYL HEPTANOL PROPYL HEPTANOL OXYGENATED HYDROCARBON C8 HEXADECANE	100 NJ 100 100 100 100 100

TEST : SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D.: 10881804

COMPOUNDS RESULTS (My/L)

CAMPHOR

TEST : SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D. : 10881803

COMPOUNDS	RESULTS (ug/L)
BUTANEDIOL METHOXYPROPOXYPROPANOL CAMPHOR OXYGENATED HYDROCARBON C7	1000 1000 100 600

TEST : SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D. : 10881802

COMPOUNDS	RESULTS (Mg/L)
UNKNOWN METHOXYPROPOXYPROPANOL OXYGENATED HYDROCARBON C10 ISOOCTANOL OXYGENATED HYDROCARBON C10 OXYGENATED HYDROCARBON C7	200 20 20 40 300

TEST: SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D.: 10881816

COMPOUNDS	RESULTS (ug/l)
METHOXYPROPOXYPROPANOL CAMPHOR OXYCENATED HYDROCARBON C7	70 NJ 6/ 20 2004

TEST: SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D.: 10881815

COMPOUNDS	RESULTS (Ug/L)
DIMETHYLBENZENE OXYGENATED HYDROCARBON C7 OXYGENATED HYDROCARBON C7 4-NONYLPHENOLS OXYGENATED HYDROCARBON C7	40 100 5000 60 3000

TEST : SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D. : 10881814

COMPOUNDS	RESULTS (ug/L)
METHYLBUTANOIC ACID HEXANOIC ACID CAMPHOR CYCLOHEXANECARBOXYLIC ACID OCTACOSANE HEXATRICONTANE OCTACOSANE PENTATRIACONTENE HEXATRIACONTANE	100/0/ 50 200 90 20 20 20 20 20 40

TEST: SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D.: 10881813

COMPOUNDS	RESULTS (ug/L)	
CAMPHOR CYCLOHEXANECARBOXYLIC ACID OXYGENATED HYDROCARBON C7	100 N J	

TEST: SEMI-VOLATILE ORGANICS (EPA 8270)

ATI I.D. : 10881812

ting time time and time time time to the time time time time time time time tim	. Dark side that the first not not been been term that the time date the date that the time the date the time time the time time the time time time time time time time tim
COMPOUNDS	RESULTS (
the day gas day and any man took has over gas the file day has been been too too too too too too too too too to	man and an
DIMETHYLBENZENE	20 NT
PROPYL BENZENE	40
ETHYLMETHYLBENZENE	200
TRIMETHYLBENZENE	60
METHYLETHYLBENZENE	40
TRIMETHYLBENZENE	200
DIETHYLBENZENE	20
DIMETHYLETHYLBENZENE	20
PHOSPHORIC ACID TRIBUTYLESTER	1000 🗸

APPENDIX D

Tentatively Identified Organic Compounds in Vactor Sediment

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308130

A8550

Lab Name: WEYERHAEUSER Contract: 046-5751

Lab Code: <u>WEYER</u> Case No.: <u>06347</u> SAS No.: _____ SDG No.: <u>308130</u>

Matrix: (soil/water) SOIL Lab Sample ID: 75271

Level: (low/med) LOW Date Received: 08/01/91

% Moisture: not dec. 25 Date Analyzed: 08/07/91

Column (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Lab File ID:

Number TICs found: 2

Sample wt/vol: 5.0 (g/mL) G

-	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
	1. 111842 2. 5881174	Nonane Octane, 3-ethyl-	25.19 26.27	11 9.3	3 00	~

TENTATIVELY IDENTIFIED COMPOUNDS

308131

Lab Name: WEYERHAEUSER Contract: 046-5751

Lab Code: <u>WEYER</u> Case No.: <u>06347</u> SAS No.: _____ SDG No.: <u>308130</u>

Matrix: (soil/water) SOIL Lab Sample ID: 75272

Sample wt/vol: 5.0 (g/mL) G Lab File ID: A8551

Level: (low/med) LOW Date Received: 08/01/91

% Moisture: not dec. 28
Date Analyzed: 08/07/91

Column (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.		Q ===
1.	Unknown hydrocarbon	19.49		9.7	t	ルゴ
2. 2867052	.alphaThujene	22.59		38	J	1
3.	Unknown hydrocarbon	23.57		15	J	1
4. 6069983	Cyclohexane, 1-methyl-4-(1-m	24.45		8.3	J	1
5.	UNKNOWN	24.89		8.3	J	i
6. 124185	Decane	25.22		33	t	!
7.	Unknown hydrocarbon	26.32		19	J	V

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.
-----	--------	-----

308132

Lab Name: WEYERHAEUSER Contract: 046-5751

Lab Code: <u>WEYER</u> Case No.: <u>06347</u> SAS No.: _____ SDG No.: <u>308130</u>

Matrix: (soil/water) SOIL Lab Sample ID: 75273

Sample wt/vol: 5.0 (g/mL) G Lab File ID: A8552

Level: (low/med) LOW Date Received: 08/01/91

% Moisture: not dec. 33
Date Analyzed: 08/07/91

Column (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
1. 7045672	Cyclohexane, 2-ethyl-1, 3-dime Unknown hydrocarbon	23.59 26.32	52 30	J 4.	á

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EP	A SA	MPLE	NO.

308133

Lab Name: WEYERHAEUSER Contract: 046-5751

Lab Code: <u>WEYER</u> Case No.: <u>06347</u> SAS No.: _____ SDG No.: <u>308130</u>

Matrix: (soil/water) SOIL

Lab Sample ID: 75274

Sample wt/vol: 5.0 (g/mL) G Lab File ID: A8575

Level: (low/med) LOW

Date Received: 08/01/91

% Moisture: not dec. __29

Date Analyzed: 08/08/91

Column (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

Number TICs found: __1

CAS NUMBER	i				l
1. 1678826 Cyclohexane, 1-methyl-4-(1-m 24.50 35	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 16/8826 Cyclonexune, 2 mem ()		Cyclohevane 1-methyl-4-(1-m	24.50	35	INJ
	1. 16/8826	cyclonexane, 1 mem, 1			

- inchyl-4-(1-methylethyl)-trins-

WOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

ŧ	***************************************	 	

EPA SAMPLE NO.

308134

Lab Name: WEYERHAEUSER Contract: 046-5751

Lab Sample ID: 75275 Matrix: (soil/water) SOIL

Sample wt/vol: 5.0 (g/mL) G Lab File ID: A8554

Date Received: <u>08/01/91</u> Level: (low/med) LOW

Date Analyzed: 08/07/91 % Moisture: not dec. 36

Dilution Factor: 1.0 Column (pack/cap) CAP

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
1. 80568	ALPHA-PINENE, (-)-	22.59	37	*NJ	يمك

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	S	AMP	LE	NO.

					308136RE
ab	Name:	weyerhaeuser	Contract:	046-5751	

ab Code: <u>WEYER</u> Case No.: <u>06347</u> SAS No.: _____ SDG No.: <u>308130</u>

Matrix: (soil/water) SOIL Lab Sample ID: 75277RE

Sample wt/vol: 5.0 (g/mL) G Lab File ID: A8577

evel: (low/med) LOW Date Received: 08/01/91

Moisture: not dec. 33 Date Analyzed: 08/08/91

olumn (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

lumber TICs found: __3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
2. 124185	Unknown hydrocarbon Decane Decane, 4-methyl-	23.60 25.22 26.31	33 27 21	1 1	叔

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308**137**

Lab Name: WEYERHAEUSER Contract: 046-5751

Lab Code: <u>WEYER</u> Case No.: <u>06347</u> SAS No.: ____ SDG No.: <u>308130</u>

Matrix: (soil/water) SOIL Lab Sample ID: 75278

Sample wt/vol: 5.0 (g/mL) G Lab File ID: A8557

Level: (low/med) LOW Date Received: 08/01/91

% Moisture: not dec. 32
Date Analyzed: 08/07/91

Column (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 1678917 2. 2216344 3. 2216333 4. 4926903 5. 80568 6. 17301949 7. 5911046 8. 489203 9. 124185	Cyclohexane, ethyl- Octane, 4-methyl- Octane, 3-methyl- Cyclohexane, 1-ethyl-1-methy ALPHA-PINENE, (-)- Nonane, 4-methyl- Nonane, 3-methyl- Cyclopentane, 1,2-dimethyl-3 Decane	16.44 17.44 17.84 20.75 22.64 23.07 23.57 24.90 25.24	54 19 8.8 24 31 88 100 66 380	
0. 2847725	Decane, 4-methyl-	26.32	100	7

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308138

Lab File ID: A8558

ab Name: WEYERHAEUSER Contract: 046-5751

Lab Sample ID: 75279 !atrix: (soil/water) SOIL

Sample wt/vol: 5.0 (g/mL) G Date Received: 08/01/91

evel: (low/med) LOW

Date Analyzed: 08/08/91 Moisture: not dec. 29

Dilution Factor: 1.0 column (pack/cap) CAP

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====	
1. 111842 2. 5911046 3. 6069983 4. 103651 5. 124185 6. 4110445	Nonane Nonane, 3-methyl- Cyclohexane, 1-methyl-4-(1-m Benzene, propyl- Decane Octane, 3,3-dimethyl-	19.59 23.59 24.52 24.92 25.24 26.32	110 65 65 70 370 110	The state of the s	5n_

E ANATUCTO DAMA CUI

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

TATIVELY IDENTIFIED COMPOUNDS 308140

Lab Name: WEYERHAEUSER Contract: 046-5751

Lab Code: <u>WEYER</u> Case No.: <u>06347</u> SAS No.: _____ SDG No.: <u>308130</u>

Matrix: (soil/water) SOIL Lab Sample ID: 75281

Sample wt/vol: 5.0 (g/mL) G Lab File ID: A8560

Level: (low/med) LOW Date Received: 08/01/91

% Moisture: not dec. 36
Date Analyzed: 08/08/91

Column (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Number TICs found: 3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====	1
1. 103651 2. 611143 3. 95636	Benzene, propyl- Benzene, 1-ethyl-2-methyl- Benzene, 1,2,4-trimethyl-	24.92 25.46 25.69	47 310 100	115	

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308141

Lab Name: WEYERHAEUSER Contract: 046-5751

Lab Code: <u>WEYER</u> Case No.: <u>06347</u> SAS No.: _____ SDG No.: <u>308130</u>

Matrix: (soil/water) SOIL

Lab Sample ID: 75282

Sample wt/vol: 5.0 (g/mL) G

Lab File ID: A8561

Level: (low/med) LOW

Date Received: 08/01/91

% Moisture: not dec. 31

Date Analyzed: 08/08/91

Column (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
2 611143	Benzene, propyl- Benzene, 1-ethyl-2-methyl- Benzene, trimethyl-	24.94 25.42 25.66	35 200 72	1

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

308142

Lab Name: WEYERHAEUSER Contract: 046-5751

Lab Code: <u>WEYER</u> Case No.: <u>06347</u> SAS No.: _____ SDG No.: <u>308130</u>

Lab Sample ID: 75283 Matrix: (soil/water) SOIL

Lab File ID: A8562 Sample wt/vol: 5.0 (g/mL) G

Date Received: 08/01/91 Level: (low/med) LOW

Date Analyzed: 08/08/91 % Moisture: not dec. 41

Dilution Factor: 1.0 Column (pack/cap) CAP

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====	
2. 103651	Benzene, (1-methylethyl)- Benzene, propyl- Benzene, 1-ethyl-2-methyl- Benzene, 1,2,4-trimethyl-	23.27 24.94 25.44 25.67	80 200 1000 270	1000	24

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

308130

Lab Name: WEYERHAEUSER Method: 8270

Lab Code: WEYER Case No.: 06347 SAS No.: SDG No.: 75271

Matrix: (soil/water) SOIL Lab Sample ID: 75271

Sample wt/vol: 30.1 (g/mL) G Lab File ID: 2BN10816B

Level: (low/med) LOW Date Received: 08/01/91

% Moisture: not dec. 26 dec. Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 08/16/91

GPC Cleanup: (Y/N) Y pH: 7.6 Dilution Factor: 1.0

Number TICs found: 20 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====	
1	UNKNOWN	4.85	45000	JX	
2. 57-10-3	HEXADECANOIC ACID	24.00	3000	JX JX JX JX	J.
3. 24035-50-5	1-PHENANTHRENECARBOXALDEHYDE	24.84	1500	JX ,	
4. 10544-50-0	SULFUR, MOL. (S8)	25.12	1300	JX	
5.	UNKNOWN	25.81	1500	JX	
6.	UNKNOWN hydrocarbon	25.94	1200	JXX	
7. 57-11-4	OCTADECANOIC ACID	26.41	960	JX JX JX	
8.	UNKNOWN	28.71	3900	JX	
9.	UNKNOWN	30.04	1800	J(X	
10. 630-02-4	OCTACOSANE	32.04	1600	JX	
11.	UNKNOWN	32.89	2200		
12.	UNKNOWN	33.36	1400	JX	
13.	TINKNOWN had a a coon	33.96	1100	JX JX JX	
14.	UNKNOWN hydrocarbon	35.82	840	JX	
15.	UNKNOWN	35.92	1800	JX	
16.	UNKNOWN	36.42	1900	JX	
17. 83-47-6	.GAMMASITOSTEROL	38.09	4300	JX	
18.	UNKNOWN	38.26	890	JX	
19.	UNKNOWN	38.62	1800	OX OX OX	
20.	UNKNOWN	39.44	850	DX 🎶	

EPA SAMPLE NO.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308131

Lab Name: WEYERHAEUSER

Method: 8270

Lab Code: WEYER Case No.: 06347 SAS No.:

SDG No.: 75271

Matrix: (soil/water) SOIL

Lab Sample ID: 75272

Sample wt/vol:

 $30.6 \quad (g/mL) \quad G$

Lab File ID:

2BN10816C

Level: (low/med) LOW

Date Received: 08/01/91

% Moisture: not dec. 28

dec.

Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 08/16/91

GPC Cleanup: (Y/N) Y

7.2 pH:

Dilution Factor: 8.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		1	1	t		
	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	_
1		The same was the same same and same same same same same same same same	4 22	01000		<u> </u>
- 1	J	UNKNOWN	4.73	91000	JX	r
-	2. 140-66-9	PHENOL, $4-(1,1,3,3-TETRAMETH)$	19.10	5500	JX NJ	In
١	3.	UNKNOWN	23.54	7800	JX	
١	4.	UNKNOWN	25.81	4700	JX	
	5. 3442-78-2	PYRENE, 2-METHYL-	27.44	5400	JX	
	6. 3353-12-6	PYRENE, 4-METHYL-	27.72	5100	JX	
	7.	UNKNOWN hydrocarbon	27.91	3300	JK '	
		UNKNOWN	28.66	6500	JX	
	8.	UNKNOWN hydiocectoon	28.99	6500	JX	
	9.		30.04	9800	JX	
	10. 629-99-2	PENTACOSANE	l .	1	JX	
	11.	UNKNOWN HEXATTION CONTRACT	31.06	12000	1 1	
	12.	UNKNOWN Pentatria contant	32.04	17000	JX	
	13. 630-02-4	OCTACOSANE	32.99	38000	JX	
	14. 205-82-3	BENZO[J] FLUORANTHENE	33.76	10000	JX	
	15. 630-03-5	NONACOSANE	33.94	28000	JX	
	16.	UNKNOWN hydrocarbon	34.87	16000	JX :	
	1	UNKNOWN hydrocorbon	35.79	14000	JX	
	17.		37.72	6500	JX	
	18.	UNKNOWN hydrotarbon	38.07	10000	JX	
	19.	UNKNOWN	- "	5500	JX V	
	20.	UNKNOWN	38.59	3500	low (
	·				l l	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308132

Lab Name: WEYERHAEUSER

Method: 8270

Lab Code: WEYER Case No.: 06347 SAS No.:

SDG No.: 75271

Matrix: (soil/water) SOIL

Lab Sample ID:

75273

Lab File ID:

2BN10816D

Sample wt/vol:

30.9 (g/mL) G

Level: (low/med) LOW

Date Received:

08/01/91

% Moisture: not dec. 32

dec.

Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 08/16/91

GPC Cleanup: (Y/N) Y

pH:

7.0

Dilution Factor: 4.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
AND THE PARTY WHEN TH	INKNOMN ===================================	4.75	69000	JX
1	HEXADECANOIC ACID	23.95	4200	
2. 57-10-3	UNKNOWN	25.79	4100	JX
3.	UNKNOWN	26.09	2500	XX
4.	UNKNOWN PAH	27.19	2800	3X
5.	UNKNOWN	28.67	4700	TX T
6.	UNKNOWN hydracecon	30.04	4200	JX
7.	UNKNOWN hvarcarben	32.04	3700 .	JX
8.	UNKNOWN	32.87	4700	JX
9.	BENZO[J]FLUORANTHENE	33.76	2800	JX
0. 205-82-3	NNKNOMN phogrammer	33.94	2800	JX
1.	UNKNOWN	35.64	4200	JX
2.	NONACOSANE	35.81	3700	
3. 630-03-5	UNKNOWN hydrocalpen	35.91	3400	JX
14.	UNKNOWN	36.19	3900	2X
15.	UNKNOWN	36.42	3000	JX
16.	UNKNOWN	38.09	11000	JX
17.	UNKNOWN	38.24	2700	JX
18.	1	38.62	5700	JX JX JX ZX
19. 20. 1058-61-3	UNKNOWN STIGMAST-4-EN-3-ONE	39.41	2500	JX V

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308133

Method: 8270 Lab Name: WEYERHAEUSER

Lab Code: WEYER Case No.: 06347 SAS No.:

Sample wt/vol:

SDG No.: 75271

Matrix: (soil/water) SOIL

Lab Sample ID:

75274

30.2 (g/mL) G

Lab File ID:

2BN10816E

Date Received: 08/01/91

Level: (low/med) LOW

% Moisture: not dec. 27

dec.

Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 08/16/91

GPC Cleanup: (Y/N) Y

pH: 7.0 Dilution Factor: 1.0

Number TICs found: 20

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
_ 1	UNKNOWN	4.87	53000	JX	<u>.</u>
2. 57-10-3	HEXADECANOIC ACID	24.04	3800	JX JX JX JX JX	2 .
3.	UNKNOWN	28.76	3400	JX /	
4.	UNKNOWN hydrocarbon	30.14	2600	J* /	
5. 630-02-4	OCTACOSANE	32.14	2200	JX /	
6.	UNKNOWN	32.54	1400	JX	
7.	UNKNOWN	32.97	1000	JX	
8.	UNKNOWN	33.09	1500	JX	
9.	UNKNOWN	33.41	1300	JX	
10.	UNKNOWN	33.47	840	JX JX JX JX	
11.	UNKNOWN	34.06	2400	JX	
12.	UNKNOWN	35.09	1200	XE	
13.	UNKNOWN	35.76	2000	JX	
14.	UNKNOWN hydreurbon	35.91	1500	3x	
15.	UNKNOWN hydrocurpers	36.01	2900		,
16.	UNKNOWN	36.52	3200	DX	
17.	UNKNOWN	37.44	2400	XE	
18.	UNKNOWN	38.19	3800	XL	
19.	UNKNOWN	38.34	1200	XY XY XY XY	
20.	UNKNOWN	38.72	1500	V X/C	

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

308134

EPA SAMPLE NO.

ab Name: WEYERHAEUSER

Method: 8270

ab Code: WEYER Case No.: 06347 SAS No.:

SDG No.: 75271

fatrix: (soil/water) SOIL

% Moisture: not dec. 36

Lab Sample ID: 75275

Sample wt/vol:

 $30.3 \quad (g/mL) G$

Lab File ID:

2BN10816F

Date Received: 08/01/91

Level: (low/med) LOW

Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 08/16/91

GPC Cleanup: (Y/N) Y

pH: 6.8

dec.

Dilution Factor: 4.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	UNKNOWN	4.75	63000	JX
2.	UNKNOWN	30.11	9200	IN XI
3.	UNKNOWN hydrocarbon	31.71	5000	JX
4.	UNKNOWN hydrocarbon	32.11	2600	3X
5.	UNKNOWN	32.47	4000	5x
6.	UNKNOWN hydrocorbon	32.51	3600	2X 2X 2X
7.	UNKNOWN	33.07	7000	JX
8.	UNKNOWN	33.39	4400	JX
9.	UNKNOWN	33.46	4700	1x
10.	UNKNOWN hydrote rboin	34.02	7900	12X
11.	UNKNOWN	34.94	2600	JXX
12.	UNKNOWN	35.06	4300	JX JX
13.	UNKNOWN	35.72	9700	JX
14.	UNKNOWN hydrocarbon	35.89	5200	JX,
15.	UNKNOWN	35.99	8400	JX
16.	UNKNOWN	36.52	10000	JX
17.	UNKNOWN hydrocur bon	36.84	4100	JX
18.	UNKNOWN	38.19	17000	TX TX TX
19.	UNKNOWN	38.32	4100	JX
20.	UNKNOWN	38.71	6000	JX V

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

308135

EPA SAMPLE NO.

Lab Name: WEYERHAEUSER

Method: 8270

Lab Code: WEYER Case No.: 06347 SAS No.:

SDG No.: 75271

Matrix: (soil/water) SOIL

Lab Sample ID: 75276

30.3 (q/mL) G

Lab File ID:

2BN10816G

Date Received: 08/01/91

Level: (low/med) LOW

Date Extracted: 08/09/91

Sample wt/vol:

% Moisture: not dec. 27 dec.

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 08/16/91

GPC Cleanup: (Y/N) Y

7.4 pH:

Dilution Factor: 1.0

Number TICs found: 20

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER COMPOUND NAME	RT ======	EST. CONC.	Q =====	. ća
1. 2. 74645-98-0 3. 544-76-3 4. 629-78-7 5. 54105-67-8 6. 7. 8. 9. 57-10-3 10. 11. 629-97-0 12. 57-11-4 13. 14. 15. 16. 17. 18. 19. 2. 74645-98-0 DODECANE, 2,7,10-TRIMETHYL- HEXADECANE HEPTADECANE HEPTADECANE HEPTADECANE HEPTADECANE UNKNOWN Podecare, 2,7,2-limetry HEXADECANOIC ACID UNKNOWN DOCOSANE OCTADECANOIC ACID UNKNOWN	4.90 17.42 18.97 20.44 20.52 21.84 21.97 23.17 24.04 24.44 25.67 26.44 28.74 30.11 31.71 32.94 33.44 35.72 35.89 36.51	52000 1200 1900 2100 1800 1800 1500 4000 1600 1400 1600 1400 1600 2300 2200 1000 1800	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- 02h

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308136

Lab Name: WEYERHAEUSER

Method: 8270

Lab Code: WEYER Case No.: 06347 SAS No.:

SDG No.: 75271

Matrix: (soil/water) SOIL

Lab Sample ID: 75277

Sample wt/vol:

30.8 (g/mL) G

Lab File ID: 2BN10816H

Date Received: 08/01/91

Level: (low/med) LOW

% Moisture: not dec. 33 dec.

Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 08/16/91

GPC Cleanup: (Y/N) Y

pH: 6.7 Dilution Factor: 4.0

Number TICs found: 20

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====	
CAS NUMBER ===================================	COMPOUND NAME UNKNOWN hydrourben UNKNOWN hydrourben UNKNOWN hydrourben UNKNOWN 4.75 27.27 30.12 31.72 32.14 32.54 32.74 33.09 33.41 33.47	55000 3700 7700 6600 7100 6900 11000 5600 3800 5100 5700 11000 4300 5100 12000 4900 14000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	/ វ	
19.	UNKNOWN UNKNOWN	38.36 38.74	3700 5800	3x √	

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Method: 8270 Lab Name: WEYERHAEUSER

308137

Lab Code: WEYER Case No.: 06347 SAS No.:

SDG No.: 75271

75278

Matrix: (soil/water) SOIL

Lab Sample ID:

Sample wt/vol:

30.1 (g/mL) G

Lab File ID:

2BN10816I

Level: (low/med) LOW

Date Received: 08/01/91

% Moisture: not dec. 32 dec.

Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 08/16/91

GPC Cleanup: (Y/N) Y

pH:

Dilution Factor: 4.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

7.3

Number TICs found: 20

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
THE THE PARTY STATE THE PARTY STATE	IINKNOWN	4.78	72000	JX
2. 74645-98-0	DODECANE, 2,7,10-TRIMETHYL-	17.42	5100	JX NJ
3. 544-76-3	HEXADECANE	18.97	7500	JX I
	HEPTADECANE	20.44	7000	JX
5. 55045-11-9	TRIDECANE, 5-PROPYL-	20.52	4600	JXL
	UNKNOWN DOCKGINE 2.2 2 7 Memory	21.84	5500	JXX \
,	UNKNOWN Hiptodecane	23.15	6200	JXX
7. 8. 57-10-3	HEXADECANOIC ACID	23.99	7400	XX \
_	UNKNOWN Hydrication	24.44	6200	JX
9.	HEPTADECANE, 2,6,10,15-TETRA		3800	JZX \
10. 54833-48-6	UNKNOWN hydrocarbon	27.96	4500	JX
11.	2-PHENANTHRENOL, 4B,5,6,7,8,	28.29	16000	JX
12. 511-15-9	UNKNOWN	29.69	3400	JX
13.	UNKNOWN hydrourson	30.07	5000	XX
14.	UNKNOWN hydriaiben	32.07	5100	JXX
15.	OCTACOSANE	33.02	5200	JXX
16. 630-02-4	NIKNOMN WAGAGEPONZ	33.99	5000	ax
17.		34.14	16000	3×
18.	UNKNOWN	35.69	7800	がななななななななななななななななななななななななななななななななななななな
19.	UNKNOWN	35.86	5000	13x V
20. 630-03-5	NONACOSANE	33.60	3000	-

..0974

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

308138

EPA SAMPLE NO.

Lab Name: WEYERHAEUSER Method: 8270

Lab Code: WEYER Case No.: 06347 SAS No.: SDG No.: 75271

Matrix: (soil/water) SOIL Lab Sample ID: 75279

Sample wt/vol: 30.6 (g/mL) G Lab File ID: 2BN10822E

Level: (low/med) LOW Date Received: 08/01/91

% Moisture: not dec. 29 dec. Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 08/22/91

GPC Cleanup: (Y/N) Y pH: 7.0 Dilution Factor: 5.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

1		1			1	
	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
		UNKNOWN	13.79	6700	TX XT	54
١	1.	1	15.52		75 113	
	2. 62238-11-3	DECANE, 2,3,5-TRIMETHYL-		16000	32	
	3. 74645-98-0	DODECANE, 2,7,10-TRIMETHYL-	17.17	19000	JX	
1	4. 544-76-3	HEXADECANE	18.70	24000	JX	
	5.	UNKNOWN hydrocarbon	19.42	6300	JX	
	6. 629-78-7	HEPTADECANE	20.17	12000	JXX	
	7.	UNKNOWN Descripe . 2,7,10-Trinchy/	20.25	11000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	8.	UNKNOWN Douerane 2, 6, 11-11, methyl	21.55	11000	x (
	9.	UNKNOWN Docience 2,7,10-Timeny	21.69	9900	5x	
	10.	UNKNOWN Hexadecane	22.89	14000	JX	
	11.	UNKNOWN Hexaderune	24.15	6500	JX	
	12.	UNKNOWN Underine 3,8 - Dimetry	25.37	5200	XXXXXXX	
	13.	UNKNOWN	27.66	5500	JX	
	14. 511-15-9	2-PHENANTHRENOL, 4B, 5, 6, 7, 8,	27.97	29000	JX	
	15.	UNKNOWN hydrocarbon	29.79	5300	JX	
	16. 630-02-4	OCTACOSANE	31.77	8700		
	17. 630-03-5	NONACOSANE	33.69	13000	2X	
	18.	UNKNOWN Hexatricontane	35.56	7300	(XX	
	19.	UNKNOWN	36.12	10000	⊈X ₹X	
	20.	UNKNOWN	37.77	18000	V XX	

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308139

Lab Name: WEYERHAEUSER

Method: 8270

Lab Code: WEYER Case No.: 06347 SAS No.: SDG No.: 75271

Matrix: (soil/water) SOIL

Lab Sample ID: 75280

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: 2BN10822G

Date Received: 08/01/91

Level: (low/med) LOW

% Moisture: not dec. 27 dec.

Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 08/22/91

GPC Cleanup: (Y/N) Y

pH: 7.1 Dilution Factor: 5.0

Number TICs found: 20

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====	
1. 544-76-3 2. 629-78-7	HEXADECANE HEPTADECANE	18.69 20.15	6800 4900	JX VJ	02
3. 54105-67-8 4.	HEPTADECANE, 2,6-DIMETHYL- UNKNOWN-Dedecane 4,7,15 Thereby	20.24	3900 4800 9400	JX JX JX	
5. 6. 57-10-3	UNKNOWN Poderane HEXADECANOIC ACID UNKNOWN PodeCane		6100 4900	JX JX	
7. 8. 9.	UNKNOWN Hexadecune	25.37 26.54	3700 2400	JX JX	
10. 11. 511-15-9	2-PHENANTHRENOL, 4B, 5, 6, 7, 8,	27.96	3500 4700 6400]X]X]X	
12. 13.	UNKNOWN HERATHICUTERS	29.79 31.79 33.07	5900 9400		
14. 15. 630-03-5 16.	UNKNOWN NONACOSANE UNKNOWN hydrachers	33.69 34.62	7400 2900	JX JX	-
17. 18.	UNKNOWN hydroce (box	35.34 35.56	8400 4300 9300	XX XX XX XX XX	
19.	UNKNOWN	36.12 37.79	11000	JX √	

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308140

Lab Name: WEYERHAEUSER

Method: 8270

Lab Code: WEYER

Case No.: 06347 SAS No.:

SDG No.: 75271

Matrix: (soil/water) SOIL

Lab Sample ID: 75281

Sample wt/vol:

30.9 (g/mL) G

dec.

Lab File ID:

2BN10822H

Date Received: 08/01/91

Level: (low/med) LOW

% Moisture: not dec. 35

Date Extracted: 08/09/91

Extraction:

(SepF/Cont/Sonc) SONC

Date Analyzed: 08/22/91

GPC Cleanup: (Y/N) Y

7.0 pH:

Dilution Factor: 5.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

EPA SAMPLE NO.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

308141

Lab Name: WEYERHAEUSER

Method: 8270

Lab Code: WEYER Case No.: 06347 SAS No.:

SDG No.: 75271

Matrix: (soil/water) SOIL

Lab Sample ID: 75282

Sample wt/vol:

30.1 (g/mL) G

Lab File ID:

2BN10822I

Level: (low/med) LOW

Date Received: 08/01/91

% Moisture: not dec. 31 dec.

Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 08/22/91

GPC Cleanup: (Y/N) Y

pH: 7.1

Dilution Factor: 2.5

Number TICs found: 20

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1. 544-76-3 2. 629-78-7 3. 54105-67-8 4. 5. 6. 7. 8. 84-64-0 9. 57-10-3 10. 11. 10544-50-0 12. 54833-48-6 13. 57-11-4 14. 15. 78-51-3 16. 17. 18. 19. 20.	HEXADECANE HEPTADECANE HEPTADECANE, 2,6-DIMETHYL- UNKNOWN Dodecane 2,7,12-conchy UNKNOWN Dodecane 2,7,12-conchy UNKNOWN UNKNOWN hydrocarber 1,2-BENZENEDICARBOXYLIC ACID HEXADECANOIC ACID UNKNOWN hydrocarbon SULFUR, MOL. (S8) HEPTADECANE, 2,6,10,15-TETRA OCTADECANOIC ACID UNKNOWN ETHANOL, 2-BUTOXY-, PHOSPHAT UNKNOWN hydrocarbon UNKNOWN hydrocarbon UNKNOWN hydrocarbon UNKNOWN hydrocarbon UNKNOWN	21.74 22.84 22.94 23.80 23.85 24.20 24.90 25.42 26.26 28.24	8600 7400 7900 6800 7100 7600 7500 13000 7200 4400 11000 5400 5600 23000 3400 5700 3700 4300 3500 6000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

308142

Lab Name: WEYERHAEUSER

Method: 8270

Lab Code: WEYER Case No.: 06347 SAS No.:

SDG No.: 75271

Matrix: (soil/water) SOIL

Lab Sample ID: 75283

Sample wt/vol:

30.1 (g/mL) G

dec.

Lab File ID: 2BN10822J

Level: (low/med) LOW

Date Received: 08/01/91

% Moisture: not dec. 41

Date Extracted: 08/09/91

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 08/22/91

GPC Cleanup: (Y/N) Y

pH: 7.3

Dilution Factor: 2.5

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT ======	EST. CONC.	Q =====
1. 611-14-3 2. 526-73-8 3. 544-76-3 4. 126-73-8 5. 629-78-7	BENZENE, 1-ETHYL-2-METHYL- BENZENE, 1,2,3-TRIMETHYL- HEXADECANE PHOSPHORIC ACID TRIBUTYL EST HEPTADECANE HEXADECANOIC ACID SULFUR, MOL. (S8) UNKNOWN 2-PHENANTHRENOL, 4B,5,6,7,8, UNKNOWN PENTACOSANE OCTACOSANE UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN CHOLESTEROL .GAMMASITOSTEROL UNKNOWN STIGMAST-4-EN-3-ONE	20.15 23.72 24.84 25.52	6300 3000 3300 4100 3400 5100 4500 4200 4300 4800 3900 4100 2400 3000 5100 9900 4600 14000 4200 4000	ス ス ス ス ス ス ス ス ス ス ス ス ス ス